905 resultados para ~(133)Cs NMR
Resumo:
利用40Ca+96Ru融合蒸发反应产生了近质子滴线核133Sm,配合氦喷嘴带传输系统采用“质子-γ”符合方法观测了它们的β缓发质子衰变,其中包括半衰期、质子能谱、第二代子核低位态之间的γ跃迁,并估计出衰变到第二代子核不同低位态的分支比.通过统计理论拟合上述实验数据,指认了133Sm的自旋宇称的可能范围.并用Woods-Saxon Strutinsky方法计算了限制组态的133Sm的核势能面,通过对比发现133Sm的自旋宇称可能有两种成分:5/2+和1/2-.这一结果与2001年发表的133Sm(EC+β+)衰变的简单衰变纲图是相容的.此外用同一方法分析了2001年Eur.Phys.J.A12: 1-4中发表的有关149Yb的β缓发质子衰变实验数据,由此指认了149Yb的基态自旋宇称为1/2-.
Resumo:
通过116Cd(14N,5n),Ebeam=65MeV的核反应布居了125Cs的高自旋态.利用在束γ谱学实验方法,进行了γ γ符合测量,使已知的125Cs核能级纲图得到了扩展,并且修正了某些组态的带头激发能.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
利用融合蒸发反应 116Cd(14 N ,4n) 12 6Cs布居了 12 6Cs的高自旋态 .观测到了 10 0多条新的γ跃迁和相应的能级 ,建立了双奇核 12 6Cs由 9个转动带构成的能级纲图 .尝试性地指定了大部分能级的自旋和宇称以及各转动带的Nilsson单粒子组态 .极大地丰富了已有的实验结果 .
Resumo:
通过96 Ru( 4 0 Ca ,ln2p)反应 ,采用氦喷嘴带传输系统和X γ与γ γ符合测量方法 ,首次建议了133Sm的简单的 (EC + β+)衰变纲图 .由于Ru靶中含有98— 10 2 Ru的成分 ,同时产生了133Pr,并首次测定了133Pr的 1 1 / 2 - 同质异能态的寿命为( 1 .1± 0 .2 )s.用单粒子模型提取了131,133,135 ,137Pr的 1 1 / 2 - 同质异能态的约化跃迁几率的实验值 ,并与Weisscopf近似估计进行了比较 .
Resumo:
利用137Cs示踪技术对干草原地区半固定沙丘表面的蚀积规律进行了初步研究。通过半固定沙丘表面不同部位137Cs剖面分布型式及其总量与背景值样点的对比分析,认为半固定沙丘表面存在微弱的风沙活动,其中沙丘中上部表现为风蚀状态,迎风坡脚与背风坡脚均为沉积部位。这一尝试性研究为风沙地貌研究提供了新思路。
Resumo:
应用137Cs示踪技术研究了半干旱干草原地区土壤风蚀过程和强度.根据不同地貌和植被条件 下土壤剖面中的137Cs沉积特征与背景值样点的对比分析,认为缓起伏草地和半固定沙丘处于轻度风 蚀与堆积状态,蚀积速率小于0.108 cm/a;半流动沙丘表面风沙活动强烈,背风坡堆积速率大于1.35cm/a.
Resumo:
The nucleus Cs-126 was investigated by means of in-beam gamma-ray spectroscopy techniques using the Nordball detector system at the Niels Bohr Institute. Excited states of Cs-126 were populated via the Cd-116(N-14, 4n)Cs-126 reaction at a beam energy of 65 MeV. The Cs-126 level scheme was considerably extended, especially at negative parity and about 40 new levels and 70 new transitions were added into the level scheme. The previously reported negative-parity rotational bands, built on pi g(7/2)circle times nu h(11/2),pi d(5/2)circle times nu h(11/2),pi h(11/2)circle times nu g(7/2), and pi h(11/2)circle times nu d(5/2) configurations, have been extended and evolve into bands involving rotationally aligned (pi h(11/2))(2) and (nu h(11/2))(2) quasiparticles. Two new rotational bands have been tentatively assigned the pi h(11/2)circle times nu s(1/2) and pi g(9/2)circle times nu h(11/2) configurations, respectively
Resumo:
Sm-133 was produced via fusion evaporation in the reaction Ca-40+Ru-96. Its P-delayed proton decay was studied by means of "p-gamma" coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, gamma-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The possible spins and parities of 133Sm were extracted by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated by using the Woods-Saxon Strutinsky method. Comparing the experimental and calculated results, the spins and parities Of Sm-133 were assigned to be 5/2(+) and 1/2(-), which is reconciled with our published simple (EC+beta(+)) decay scheme Of Sm-113 in 2001. In addition, our experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J., 2001, A12: 1-4 was also analyzed by using the same method. The spin and parity of Yb-149 was assigned to be 1/2-.
Resumo:
The proton-rich isotope Sm-133 was produced via the fusion evaporation reaction Ca-40 + Ru-96. Its beta-delayed proton decay was studied by p-gamma coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, gamma-transitions following the proton emission, as well as beta-delayed proton branching ratios to the low-lying states in the grand-daughter nucleus were determined. Comparing the observed beta-delayed proton branching ratios with statistical model calculations, the best agreement is found assuming that only one level with the spin of 3/2 in Sm-133 decays or two levels with the spins of 1/2 and 5/2 decay with similar half-lives. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated using the Woods-Saxon-Strutinsky method, which suggests a 1/2-ground state and a 5/2(+) isomer with an excitation energy of 120 keV. Therefore, the simple(EC+beta(+)) decay scheme of Sm-133 in Eur. Phys. J.A 11,277(2001) has been revised. In addition, our previous experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J. A 12,1 ( 2 0 0 1) was also analyzed using the same method. The spin-parity of Yb-149 is suggested to be 1/2(-).
Resumo:
The candidate chiral doublet bands recently observed in Cs-126 have been extended to higher spins, several new linking transitions between the two partner members of the chiral doublet bands are observed, and gamma-intensities related to the chiral doublet bands are presented by analyzing the gamma-gamma coincidence data collected earlier at the NORDBALL through the Cd-116(N-14, 4n)Cs-126 reaction at a beam energy of 65 MeV. The intraband B(M1)/B(E2) and interband B(M1)(in)/B(M1)(out) ratios and the energy staggering parameter, S(I), have been deduced for these doublet bands. The results are found to be consistent with the chiral interpretation for the two structures. Furthermore, the observation of chiral doublet bands in Cs-126 together with those in Cs-124, Cs-128, Cs-130, and Cs-132 also indicates that the chiral conditions do not change rapidly with decreasing neutron number in these odd-odd Cesium isotopes.
Resumo:
Calculations of the 4d absolute photoabsorption cross sections of the Xe-like Cs+ ion covering the energy region from 80 to 190 eV have been performed by using the multi-configuration Dirac-Fock method. The calculated cross sections are compared with the absolute experimental photoabsorption cross-section spectrum (Kjeldsen et al 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2845) and other available theoretical results. In the 80-90 eV region, the discrete structure resulting from photoexcitation of a 4d electron into nf and np orbits are successfully identified. Above the 4d threshold, i.e. in the 90-190 eV energy region, a reasonable agreement between experiment and computations is found for the intense 4d -> epsilon f shape resonance.