976 resultados para vehicle-driver model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vehicle holding method is proposed for mitigating the effect of service disruptions on coordinated intermodal freight operations. Existing studies are extended mainly by (1) modeling correlations among vehicle arrivals and (2) considering decision risks with a mean-standard deviation optimization model. It is shown that the expected value of the total cost in the proposed formulation is not affected by the correlations, while the variance can be miscomputed when arrival correlations are neglected. Some implications of delay propagation are also identified when optimizing vehicle holding decisions in real-time. General criteria are provided for determining the boundary of the affected region and length of the numerical search, based on the frequency of information updates. Theoretical analyses are supported by three numerical examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the therapeutic effect of Rhizoma drynariae extract (RDE) on ovariectomyinduced osteoporosis in rats. Methods: Female Sprague-Dawley rats were randomly assigned to a sham-operated group (control) and five ovariectomy (OVX) subgroups: OVX with vehicle (OVX), OVX with 17ß-estradiol (E2, 25 μg/kg/day), and OVX with RDE doses (40, 80, and 160 mg/kg/day). Daily oral administration of E2 or RDE started 4 weeks after OVX and lasted for 16 weeks. The bone mineral density (BMD) of the L4 vertebrae and right femurs was estimated. The length of each femur was measured with a micrometer gauge, and the center of the diaphysis determined. Three representatives L4 vertebrae were selected to evaluate the trabecular microarchitecture. Serum alkaline phosphatase (ALP), urinary calcium (U-Ca), urinary phosphorus (U-P), urinary creatinine (Cr) and osteocalcin (OC) levels were measured. Results: The study showed that high-dose of RDE significantly inhibited the bone mineral density (BMD) reduction of L4 vertebrae (0.20 ± 0.02 g/cm3, p < 0.05) and femurs (0.18 ± 0.02 g/cm3, p < 0.05) caused by OVX and prevented the deterioration of trabecular microarchitecture (p < 0.05), which were accompanied by a significant decrease in skeletal remodeling (p < 0.05) as evidenced by the lower levels of bone turnover markers. High-dose of RDE improved morphometric parameters, namely, Tb-N (3.8 ± 0.2 mm, p < 0.05), Tb-Th (0.083 ± 0.011 mm, p < 0.05) and Tb-Sp (0.19 ± 0.01 mm, p < 0.05) in L4 vertebrae significantly. The present study indicates that the administration of RDE at higher doses over a 16-week period can prevent OVX-induced osteoporosis in rats without hyperplastic effects on the uterus. Conclusion: Thus, RDE is a potential natural alternative for postmenopausal osteoporosis treatment in elderly women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle fuel consumption and emission are two important effectiveness measurements of sustainable transportation development. Pavement plays an essential role in goals of fuel economy improvement and greenhouse gas (GHG) emission reduction. The main objective of this dissertation study is to experimentally investigate the effect of pavement-vehicle interaction (PVI) on vehicle fuel consumption under highway driving conditions. The goal is to provide a better understanding on the role of pavement in the green transportation initiates. Four study phases are carried out. The first phase involves a preliminary field investigation to detect the fuel consumption differences between paired flexible-rigid pavement sections with repeat measurements. The second phase continues the field investigation by a more detailed and comprehensive experimental design and independently investigates the effect of pavement type on vehicle fuel consumption. The third study phase calibrates the HDM-IV fuel consumption model with data collected in the second field phase. The purpose is to understand how pavement deflection affects vehicle fuel consumption from a mechanistic approach. The last phase applies the calibrated HDM-IV model to Florida’s interstate network and estimates the total annual fuel consumption and CO2 emissions on different scenarios. The potential annual fuel savings and emission reductions are derived based on the estimation results. Statistical results from the two field studies both show fuel savings on rigid pavement compared to flexible pavement with the test conditions specified. The savings derived from the first phase are 2.50% for the passenger car at 112km/h, and 4.04% for 18-wheel tractor-trailer at 93km/h. The savings resulted from the second phase are 2.25% and 2.22% for passenger car at 93km/h and 112km/h, and 3.57% and 3.15% for the 6-wheel medium-duty truck at 89km/h and 105km/h. All savings are statistically significant at 95% Confidence Level (C.L.). From the calibrated HDM-IV model, one unit of pavement deflection (1mm) on flexible pavement can cause an excess fuel consumption by 0.234-0.311 L/100km for the passenger car and by 1.123-1.277 L/100km for the truck. The effect is more evident at lower highway speed than at higher highway speed. From the network level estimation, approximately 40 million gallons of fuel (combined gasoline and diesel) and 0.39 million tons of CO2 emission can be saved/reduced annually if all Florida’s interstate flexible pavement are converted to rigid pavement with the same roughness levels. Moreover, each 1-mile of flexible-rigid conversion can result in a reduction of 29 thousand gallons of fuel and 258 tons of CO2 emission yearly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency, time and places of charging and discharging have critical impact on the Quality of Experience (QoE) of using Electric Vehicles (EVs). EV charging and discharging scheduling schemes should consider both the QoE of using EV and the load capacity of the power grid. In this paper, we design a traveling plan-aware scheduling scheme for EV charging in driving pattern and a cooperative EV charging and discharging scheme in parking pattern to improve the QoE of using EV and enhance the reliability of the power grid. For traveling planaware scheduling, the assignment of EVs to Charging Stations (CSs) is modeled as a many-to-one matching game and the Stable Matching Algorithm (SMA) is proposed. For cooperative EV charging and discharging in parking pattern, the electricity exchange between charging EVs and discharging EVs in the same parking lot is formulated as a many-to-many matching model with ties, and we develop the Pareto Optimal Matching Algorithm (POMA). Simulation results indicates that the SMA can significantly improve the average system utility for EV charging in driving pattern, and the POMA can increase the amount of electricity offloaded from the grid which is helpful to enhance the reliability of the power grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years Electric Vehicles (EVs) are getting more importance as future transport systems, due to the increase of the concerns relevant to the greenhouse gases emission and the use fossil fuel. The management of the charging and discharging process of EVs could provide new business model for participating in the electricity markets. Moreover, vehicle to grid systems have the potential of increasing utility system flexibility. This thesis develops some models for the optimal integration of the EVs in the electricity market. In particular, the thesis focuses on the optimal bidding strategy of an EV aggregator participating to both the day ahead market and the secondary reserve market. The aggregator profit is maximized taking into account the energy balance equation, as well as the technical constraints of energy settlement, power supply and state of charge of the EVs. The results obtained by using the GAMS (General Algebraic Modelling System) environment are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study analyses the calibration process of a newly developed high-performance plug-in hybrid electric passenger car powertrain. The complexity of modern powertrains and the more and more restrictive regulations regarding pollutant emissions are the primary challenges for the calibration of a vehicle’s powertrain. In addition, the managers of OEM need to know as earlier as possible if the vehicle under development will meet the target technical features (emission included). This leads to the necessity for advanced calibration methodologies, in order to keep the development of the powertrain robust, time and cost effective. The suggested solution is the virtual calibration, that allows the tuning of control functions of a powertrain before having it built. The aim of this study is to calibrate virtually the hybrid control unit functions in order to optimize the pollutant emissions and the fuel consumption. Starting from the model of the conventional vehicle, the powertrain is then hybridized and integrated with emissions and aftertreatments models. After its validation, the hybrid control unit strategies are optimized using the Model-in-the-Loop testing methodology. The calibration activities will proceed thanks to the implementation of a Hardware-in-the-Loop environment, that will allow to test and calibrate the Engine and Transmission control units effectively, besides in a time and cost saving manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced Driver Assistance Systems (ADAS) are proving to have huge potential in road safety, comfort, and efficiency. In recent years, car manufacturers have equipped their high-end vehicles with Level 2 ADAS, which are, according to SAE International, systems that combine both longitudinal and lateral active motion control. These automated driving features, while only available in highway scenarios, appear to be very promising towards the introduction of hands-free driving. However, as they rely only on an on-board sensor suite, their continuative operation may be affected by the current environmental conditions: this prevents certain functionalities such as the automated lane change, other than requiring the driver to keep constantly the hands on the steering wheel. The enabling factor for hands-free highway driving proposed by Mobileye is the integration of high-definition maps, thus leading to the so-called Level 2+. This thesis was carried out during an internship in Maserati's Virtual Engineering team. The activity consisted of the design of an L2+ Highway Assist System following the Rapid Control Prototyping approach, starting from the definition of the requirements up to the real-time implementation and testing on a simulator of the brand new compact SUV Maserati Grecale. The objective was to enhance the current Level 2 highway driving assistance system with hands-free driving capability; for this purpose an Autonomous Lane Change functionality has been designed, proposing a Model Predictive Control-based decision-maker, in charge of assessing both the feasibility and convenience of performing a lane-change maneuver. The result is a Highway Assist System capable of driving the vehicle in a traffic scenario safely and efficiently, never requiring driver intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of modern and increasingly sensitive image sensors, the increasingly compact design of the cameras, and the recent emergence of low-cost cameras allowed the Underwater Photogrammetry to become an infallible and irreplaceable technique used to estimate the structure of the seabed with high accuracy. Within this context, the main topic of this work is the Underwater Photogrammetry from a geomatic point of view and all the issues associated with its implementation, in particular with the support of Unmanned Underwater Vehicles. Questions such as: how does the technique work, what is needed to deal with a proper survey, what tools are available to apply this technique, and how to resolve uncertainties in measurement will be the subject of this thesis. The study conducted can be divided into two major parts: one devoted to several ad-hoc surveys and tests, thus a practical part, another supported by the bibliographical research. However the main contributions are related to the experimental section, in which two practical case studies are carried out in order to improve the quality of the underwater survey of some calibration platforms. The results obtained from these two experiments showed that, the refractive effects due to water and underwater housing can be compensated by the distortion coefficients in the camera model, but if the aim is to achieve high accuracy then a model that takes into account the configuration of the underwater housing, based on ray tracing, must also be coupled. The major contributions that this work brought are: an overview of the practical issues when performing surveys exploiting an UUV prototype, a method to reach a reliable accuracy in the 3D reconstructions without the use of an underwater local geodetic network, a guide for who addresses underwater photogrammetry topics for the first time, and the use of open-source environments.