952 resultados para vascular targeting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers two recent initiatives in Northern Ireland relating to targeting social need and inequalities. While the paper deals with each separately they should be seen as complementary. Therefore, many of the points made in relation to one are also pertinent to the other. åÊ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es recullen les dades dels pacients amb ictus agut (isquèmic i hemorràgic) que ingressen al nostre servei i es comparen les dades epidemiològiques, clíniques i de pronòstic de dones i homes. En l'anàlisi comparatiu s’objectiven diferències en quant als factors de risc entre ambdós sexes. I es troben factors independents de mal pronòstic en els pacients amb un ictus isquèmic: l'antecedent de cardiopatia isquèmica, l’escala de rankin previ i l'escala canadenca a l'ingrés. En l'anàlisi de regressió logística es troben factors independents de mal pronòstic en els pacients amb una hemorràgia cerebral l'edat i l'escala canadenca a l'ingrés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistics Users Council Annual Conference This paper considers two recent initiatives in NI relating to targeting social need, and inequalities. While the paper deals with each separately they should be seen as complementary. Therefore, many of the points made in relation to one are also pertinent to the other. åÊ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor β/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca(2+)/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revisió retrospectiva de pacients menors de 50 anys ingressats en el servei de Neurologia amb patologia cerebrovascular aguda des de gener 2006 fins desembre 2009, amb l'objectiu principal de descriure la implicació de la cocaïna en la patologia vascular cerebral en pacients joves. Es comparen 18 pacients amb nivells de cocaïna positius a l'ingrés i 79 pacients amb nivells negatius. De tots ells, es recullen diferents variables que defineixen el perfil de risc vascular, característiques clínico-topogràfiques de l'ictus i morbimortalitat associada als mateixos; finalment es realitza una anàlisi estadística de les dues poblacions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARYIntercellular communication is achieved at specialized regions of the plasma membrane by gap junctions. The proteins constituting the gap junctions are called connexins and are encoded by a family of genes highly conserved during evolution. In adult mouse, four connexins (Cxs) are known to be expressed in the vasculature: Cx37, Cx40, Cx43 and Cx45. Several recent studies have provided evidences that vascular connexins expression and blood pressure regulation are closely linked, suggesting a role for connexins in the control of blood pressure. However, the precise function that each vascular connexin plays under physiological and pathophysiological conditions is still not elucidated. In this context, this work was dedicated to evaluate the contribution of each of the four vascular connexins in the control of the vascular function and in the blood pressure regulation.In the present work, we first demonstrated that vascular connexins are differently regulated by hypertension in the mouse aorta. We also observed that endothelial connexins play a regulatory role on eNOS expression levels and function in the aorta, therefore in the control of vascular tone. Then, we demonstrated that Cx40 plays a pivotal role in the kidney by regulating the renal levels of COX-2 and nNOS, two key enzymes of the macula densa known to participate in the control of renin secreting cells. We also found that Cx43 forms the functional gap junction involved in intercellular Ca2+ wave propagation between vascular smooth muscle cells. Finally, we have started to generate transgenic mice expressing specifically Cx40 in the endothelium to investigate the involvement of Cx40 in the vasomotor tone, or in the renin secreting cells to evaluate the role of Cx40 in the control of renin secretion.In conclusion, this work has allowed us to identify new roles for connexins in the vasculature. Our results suggest that vascular connexins could be interesting targets for new therapies caring hypertension and vascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the role of arginine vasopressin (AVP) in congestive heart failure (CHF), 10 patients with CHF refractory to conventional treatment were studied before and 60 minutes after intravenous administration of 5 micrograms/kg of d(CH2)5Tyr(Me)AVP, a specific antagonist of AVP at the vascular receptor level. Heart rate, systemic arterial pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac index by thermodilution and cutaneous blood flow by laser-Doppler technique were measured. In 9 patients with no significant hemodynamic and cutaneous blood flow response to the AVP antagonist, baseline values (mean +/- standard deviation) were: heart rate, 77 +/- 14 beats/min; systemic arterial pressure, 120/79 +/- 18/8 mm Hg; pulmonary arterial pressure, 42/21 +/- 12/8 mm Hg; pulmonary capillary wedge pressure, 19 +/- 7 mm Hg; cardiac index, 2.2 +/- 0.6 liters/min/m2; plasma AVP, 2.3 +/- 0.8 pg/ml; and plasma osmolality, 284 +/- 14 mosm/kg H2O. The tenth patient had the most severe CHF. His plasma AVP level was 55 pg/ml and plasma osmolality was 290 mosm/kg. He responded to the AVP antagonist with a decrease in systemic arterial pressure from 115/61 to 79/41 mm Hg, in pulmonary arterial pressure from 58/31 to 33/13 mm Hg and in pulmonary capillary wedge pressure from 28 to 15 mm Hg. Simultaneously, cardiac index increased from 1.1 to 2.2 liters/min/m2 and heart rate from 113 to 120 beats/min; cutaneous blood flow increased 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small vessel pathology and microvascular lesions are no longer considered as minor players in the fields of cognitive impairment and mood regulation. Although frequently found in cognitively intact elders, both neuroimaging and neuropathological data revealed the negative impact on cognitive performances of their presence within neocortical association areas, thalamus and basal ganglia. Unlike cognition, the relationship between these lesions and mood dysregulation is still a matter of intense debate. Early studies focusing on the role of macroinfarct location in the occurrence of post-stroke depression (PSD) led to conflicting data. Later on, the concept of vascular depression proposed a deleterious effect of subcortical lacunes and deep white matter demyelination on mood regulation in elders who experienced the first depressive episode. More recently, the chronic accumulation of lacunes in thalamus, basal ganglia and deep white matter has been considered as a strong correlate of PSD. We provide here a critical overview of neuroimaging and neuropathological sets of evidence regarding the affective repercussions of vascular burden in the aging brain and discuss their conceptual and methodological limitations. Based on these observations, we propose that the accumulation of small vascular and microvascular lesions constitutes a common neuropathological platform for both cognitive decline and depressive episodes in old age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Introduction The primary function of the contractile vascular smooth muscle cells (cVSMCs) is the regulation of the vascular contractility which means the adaptation of the vascular tonus in response to the modulation of the blood pressure and blood flow. The cVSMCs are essentially quiescent, and therefore their synthesis rate is very limited. They are characterized by the expression of contractile proteins specific to the muscular tissue including myosin, h-­‐caldesmon and <-­‐smooth muscle actin (〈-­‐SMA). These contractile cells are strongly represented in the media layer of the arterial wall and, in a smaller proportion, of the vein wall. Their typical stretched-­‐out morphology allows recognizing them by a histological analysis. They do not produce any extracellular matrix (ECM), and do not migrate through the different layers of the vessel wall, and are not directly involved in the development of intimal hyperplasia (IH). Neointimal formation occurs after endothelial disruption leading to complex molecular and biological mechanisms. The de-­‐differentiation of cVSMCs into synthetic VSMCs (sVSMCs) is mentioned as a key element. These non mature cells are able to proliferate and produce ECM. The characterization of the vascular smooth muscle cells (VSMCs) from healthy and stenosed vascular tissues will contribue to the understanding of the different biological processes leading to IH and will be useful for the development of new therapies to interfere with the cVSMCs growth and migration. The aim of our research was to quantify the proportion of cVSMCs and sVSMCs into the healthy and pathologic human blood vessel wall and to characterize their phenotype. Methods We selected 23 specimens of arterial and venous segments from 18 patients. All these specimens were stored in the biobank from the thoracic and vascular surgery departement. 4 groups were designed (group 1 :arteries without lesions (n=3) ;group 2 : veins without lesions (n=1); group 3: arteries with stenosis (n=9); group 4: veins with stenosis (n=10)). Histology: 5µm-­‐sections were made from each sample embedded in paraffin wax and further stained with hematoxylin & eosin (HE), Van Gieson's stain (VGEL) and Masson's Trichrome (TMB). Pathologic tissues were defined using the label that was given to the macroscopic samples by the surgeon and also, based on the histological analysis with HE and VGEL evaluating the presence of a thickened intima. The same was done to the control samples evaluating the absence of thickening. Immunohistochemistry : The primary antibodies were used :〈-­‐SMA, vimentin, h-­‐ caldesmon, calponin, smooth muscle-myosin heavy chain (SM-­‐MHC), tropomyosin-­‐4, retinol binding protein-­‐1 (RBP-­‐1), nonmuscle-­‐myosin heavy chain-­‐B (NM-­‐MHC-­‐B), Von Willebrand factor (VWF). A semi-­‐quantitative assessment of the intensity of each sample stained was performed. Western Blot : Segments of arteries and veins were analyzed using the following primary antibodies :〈-­‐SMA, Calponin, SM-­‐MHC, NM-­‐MHC-­‐B. The given results were then normalized with tubulin. Results Our data showed that, when using immunohistochemistry analysis we found that〈-­‐SMA was mostly expressed in control arteries, whereas NM-­‐MHC-­‐B in the pathologic ones. Using SM-­‐MHC, calponin, vimentin and caldesmon we found no significative differences in the expression of these proteins in the control and in the pathologic samples. Western Blot analysis showed an inverse correlation between healthy and pathological samples as <-­‐ SMA was more expressed in the pathological samples, while NM-­‐MHC-­‐B in the control group; SM-­‐MHC and calponin were mostly expressed in the pathologic samples. Conclusion Our study showed no clear differences between stenotic and control arterial and venous segments using semi-­‐quantitative assessement by immunohistochemistry. Western Blot showed a significant increased expression of 〈-­‐SMA, calponin and SM-­‐MHC in the arteries with stenosis, while NM-­‐MHC-­‐B was mostly expressed in the arteries without lesions. Further studies are needed to track the lineage of VSMCs to understand the mechanisms leading toIH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUESTION UNDER STUDY: Domestic accidents are an important problem in paediatric medicine. This study was designed to gain a better understanding of burn mechanisms and target prevention. METHODS: Children treated for burn lesions in the Department of Paediatric Surgery between August 2004 and August 2005 were included in this prospective study. The burn mechanisms, the children's ages and the circumstances in which children were burned as well as their home environment variables were analyzed. RESULTS: The current study included eighty-nine patients, aged between 2 months and 15 years. Seventy-eight percent were less than 5 years old. More than half were boys. Hot liquid scalding was the most frequent mechanism. There does not seem to be an increased risk in the immigrant population or in low economic status families. In most cases, an adult person was present at time of injury. CONCLUSIONS: If we were to describe the highest "at risk" candidate for a burn in our region, it would be a boy aged 15 months to 5 years who is burned by a cup of hot liquid on his hand, at home, around mealtime, in the presence of one or both parents. Reduced attention in the safe domestic setting is probably responsible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of omics technologies allowing the global analysis of a given biological or molecular system, rather than the study of its individual components, has revolutionized biomedical research, including cardiovascular medicine research in the past decade. These developments raised the prospect that classical, hypothesis-driven, single gene-based approaches may soon become obsolete. The experience accumulated so far, however, indicates that omic technologies only represent tools similar to those classically used by scientists in the past and nowadays, to make hypothesis and build models, with the main difference that they generate large amounts of unbiased information. Thus, omics and classical hypothesis-driven research are rather complementary approaches with the potential to effectively synergize to boost research in many fields, including cardiovascular medicine. In this article we discuss some general aspects of omics approaches, and review contributions in three areas of vascular biology, thrombosis and haemostasis, atherosclerosis and angiogenesis, in which omics approaches have already been applied (vasculomics).