931 resultados para two-photon exchange
Resumo:
In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.
Resumo:
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
Resumo:
We proposed in our previous work V-substituted In2S3 as an intermediate band (IB) material able to enhance the efficiency of photovoltaic cells by combining two photons to achieve a higher energy electron excitation, much like natural photosynthesis. Here this hyper-doped material is tested in a photocatalytic reaction using wavelength-controlled light. The results evidence its ability to use photons with wavelengths of up to 750 nm, i.e. with energy significantly lower than the bandgap (=2.0 eV) of non-substituted In2S3, driving with them the photocatalytic reaction at rates comparable to those of non-substituted In2S3 in its photoactivity range (λ ≤ 650 nm). Photoluminescence spectra evidence that the same bandgap excitation as in V-free In2S3 occurs in V-substituted In2S3 upon illumination with photons in the same sub-bandgap energy range which is effective in photocatalysis, and its linear dependence on light intensity proves that this is not due to a nonlinear optical property. This evidences for the first time that a two-photon process can be active in photocatalysis in a single-phase material. Quantum calculations using GW-type many-body perturbation theory suggest that the new band introduced in the In2S3 gap by V insertion is located closer to the conduction band than to the valence band, so that hot carriers produced by the two-photon process would be of electron type; they also show that the absorption coefficients of both transitions involving the IB are of significant and similar magnitude. The results imply that V-substituted In2S3, besides being photocatalytically active in the whole visible light range (a property which could be used for the production of solar fuels), could make possible photovoltaic cells of improved efficiency.
Resumo:
The function of dendritic spines, postsynaptic sites of excitatory input in the mammalian central nervous system (CNS), is still not well understood. Although changes in spine morphology may mediate synaptic plasticity, the extent of basal spine motility and its regulation and function remains controversial. We investigated spine motility in three principal neurons of the mouse CNS: cerebellar Purkinje cells, and cortical and hippocampal pyramidal neurons. Motility was assayed with time-lapse imaging by using two-photon microscopy of green fluorescent protein-labeled neurons in acute and cultured slices. In all three cell types, dendritic protrusions (filopodia and spines) were highly dynamic, exhibiting a diversity of morphological rearrangements over short (<1-min) time courses. The incidence of spine motility declined during postnatal maturation, but dynamic changes were still apparent in many spines in late-postnatal neurons. Although blockade or induction of neuronal activity did not affect spine motility, disruption of actin polymerization did. We hypothesize that this basal motility of dendritic protrusions is intrinsic to the neuron and underlies the heightened plasticity found in developing CNS.
Resumo:
Two-photon excitation microscopy was used to image and quantify NAD(P)H autofluorescence from intact pancreatic islets under glucose stimulation. At maximal glucose stimulation, the rise in whole-cell NAD(P)H levels was estimated to be ≈30 μM. However, because glucose-stimulated insulin secretion involves both glycolytic and Kreb's cycle metabolism, islets were cultured on extracellular matrix that promotes cell spreading and allows spatial resolution of the NAD(P)H signals from the cytoplasm and mitochondria. The metabolic responses in these two compartments are shown to be differentially stimulated by various nutrient applications. The glucose-stimulated increase of NAD(P)H fluorescence within the cytoplasmic domain is estimated to be ≈7 μM. Likewise, the NAD(P)H increase of the mitochondrial domain is ≈60 μM and is delayed with respect to the change in cytoplasmic NAD(P)H by ≈20 sec. The large mitochondrial change in glucose-stimulated NAD(P)H thus dominates the total signal but may depend on the smaller but more rapid cytoplasmic increase.
Resumo:
Cameleons are genetically-encoded fluorescent indicators for Ca2+ based on green fluorescent protein variants and calmodulin (CaM). Because cameleons can be targeted genetically and imaged by one- or two-photon excitation microscopy, they offer great promise for monitoring Ca2+ in whole organisms, tissues, organelles, and submicroscopic environments in which measurements were previously impossible. However, the original cameleons suffered from significant pH interference, and their Ca2+-buffering and cross-reactivity with endogenous CaM signaling pathways was uncharacterized. We have now greatly reduced the pH-sensitivity of the cameleons by introducing mutations V68L and Q69K into the acceptor yellow green fluorescent protein. The resulting new cameleons permit Ca2+ measurements despite significant cytosolic acidification. When Ca2+ is elevated, the CaM and CaM-binding peptide fused together in a cameleon predominantly interact with each other rather than with free CaM and CaM-dependent enzymes. Therefore, if cameleons are overexpressed, the primary effect is likely to be the unavoidable increase in Ca2+ buffering rather than specific perturbation of CaM-dependent signaling.
Resumo:
Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μm below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.
Resumo:
Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt c′ confirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant.
Resumo:
Intrinsic, three-dimensionally resolved, microscopic imaging of dynamical structures and biochemical processes in living preparations has been realized by nonlinear laser scanning fluorescence microscopy. The search for useful two-photon and three-photon excitation spectra, motivated by the emergence of nonlinear microscopy as a powerful biophysical instrument, has now discovered a virtual artist's palette of chemical indicators, fluorescent markers, and native biological fluorophores, including NADH, flavins, and green fluorescent proteins, that are applicable to living biological preparations. More than 25 two-photon excitation spectra of ultraviolet and visible absorbing molecules reveal useful cross sections, some conveniently blue-shifted, for near-infrared absorption. Measurements of three-photon fluorophore excitation spectra now define alternative windows at relatively benign wavelengths to excite deeper ultraviolet fluorophores. The inherent optical sectioning capability of nonlinear excitation provides three-dimensional resolution for imaging and avoids out-of-focus background and photodamage. Here, the measured nonlinear excitation spectra and their photophysical characteristics that empower nonlinear laser microscopy for biological imaging are described.
Resumo:
Residue replacements were made at five positions (Arg-73, Asp-76, Tyr-87, Asp-106, and Asp-201) in the Halobacterium salinarium phototaxis receptor sensory rhodopsin I (SR-I) by site-specific mutagenesis. The sites were chosen for their correspondence in position to residues of functional importance in the homologous light-driven proton pump bacteriorhodopsin found in the same organism. This work identifies a residue in SR-I shown to be of vital importance to its attractant signaling function: Asp-201. The effect of the substitution with the isosteric asparagine is to convert the normally attractant signal of orange light stimulation to a repellent signal. In contrast, similar neutral substitution of the four other ionizable residues near the photoactive site allows essentially normal attractant and repellent phototaxis signaling. Wild-type two-photon repellent signaling by the receptor is intact in the Asp-201 mutant, genetically separating the wild-type attractant and repellent signal generation processes. A possible explanation and implications of the inverted signaling are discussed. Results of neutral residue substitution for Asp-76 confirm our previous evidence that proton transfer reactions involving this residue are not important to phototaxis but that Asp-76 functions as the Schiff base proton acceptor in proton translocation by transducer-free SR-I.
Resumo:
Plusieurs décennies de recherche ont permis de mieux comprendre les effets de l’athérosclérose sur le système cardiovasculaire, d’améliorer la prévention et de développer des traitements efficaces. Les effets de l’athéroslérose sur le cerveau demeurent toutefois mal compris même si le lien entre le fonctionnement cognitif et la santé du système vasculaire est maintenant bien établi. La venue de nouvelles méthodes d’imagerie telle la microscopie laser à 2-photons (TPLM) permet d’étudier l’impact de certaines maladies sur la microvasculature cérébrale en mesurant le flux sanguin dans des vaisseaux uniques situés dans des régions cérébrales millimétriques sous la surface. Les résultats des études in vitro peuvent dorénavant être corrélés à ceux obtenus in vivo. En premier lieu, ce mémoire revoit la théorie ayant permis le développement de la TPLM qui permet de prendre des mesures hémodynamiques in vivo dans des vaisseaux de très petits calibres tels des capillaires cérébraux de souris. Par la suite, son utilisation est décrite chez des souris anesthésiées afin de comparer les mesures d’hémodynamie cérébrale tels la vitesse des globules rouges, le flux de globules rouges, le flux sanguin cérébral, l’hématocrite sanguin et le diamètre des vaisseaux. Finalement, nous avons comparé les données hémodynamiques entre des souris de 3 mois normales (WT ; n=6) et des souris atteintes d’athérosclérose précoce (ATX ; n=6). Les résultats obtenus sur un nombre total de 209 capillaires (103 pour les souris WT et 106 pour les souris ATX) démontrent que les souris ATX possèdent une vitesse des globules rouges (+40%) plus grande, un flux de globule rouge plus grand (+12%) et un flux capillaire plus élevé (+14%) sans démontrer pour aucun de ces paramètres, une différence statistiquement significative. L’hématocrite moyen (35±4% vs 33±2% ; p=0.71) et le diamètre moyen des vaisseaux (4.88±0.22μm vs 4.86±0.20μm ; p=0.23) étaient également comparables. La vitesse des globules rouges a démontré une faible corrélation avec le diamètre des vaisseaux (r=0.39) et avec le flux de globules rouges/seconde (r=0.59). En conclusion, les travaux menés dans le cadre de ce mémoire de maîtrise permettent d'envisager, grâce aux nouvelles méthodes d’imagerie cérébrale telle la TPLM, une meilleure compréhension des mécanismes hémodynamiques sous-jacents à la microcirculation cérébrale. L’effet d’une pression pulsée augmentée, tel que proposée dans l’athérosclérose reste cependant à démontrer avec cette méthode d’imagerie.
Resumo:
Photoluminescent emission is observed from surface-passivated PbS nanocrystals following the two-photon excitation of high-energy excitonic states. The emission appears directly at the excitation energy with no detectable Stokes-shift for a wide range of excitation energies. The observation of direct emission from states excited by two-photon absorption indicates that the parity of the excited states of surface-passivated PbS nanocrystals is partially mixed.
Resumo:
We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A simple and effective method for purifying photoluminescent water-soluble surface passivated PbS nanocrystals has been developed. Centrifuging at high speeds removes PbS nanocrystals that exhibit strong red band edge photoluminescence from an original solution containing multiple nanocrystalline species with broad photoluminescence spectra. The ability to purify the PbS nanocrystals allowed two-photon photoluminescence spectroscopy to be performed on water-soluble PbS nanocrystals and be attributed to band edge recombination. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photons and a superposition of coherent states, from input single- and two-photon Fock states, respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam splitter. We transform the quantum system by postselecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using coherent states and experimentally measure fidelities that are only achievable using quantum resources.