969 resultados para transport systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article provides a review of the recent theory of transport in nanopores developed in the author's laboratory. In particular the influence of fluid-solid interactions on the transport coefficient is examined, showing that such interactions reduce the value of the coefficient by almost an order of magnitude in comparison to the Knudsen theory for non-interacting systems. The activation energy and potential energy barriers for diffusion in smooth pores with a one-dimensional potential energy profile are also discussed, indicating the inadequacy of the commonly used assumption of proportionality between the activation energy and heat of adsorption or the minimum pore potential energy. A further feature affected by fluid-solid interactions is the nature of the reflection of fluid molecules colliding with a pore wall surface, varying from being nearly specular - such as in carbon nanotubes - to nearly diffuse for amorphous solids. Diffuse reflection leads to momentum loss and reduced transport coefficients. However, fluid-solid interactions do not affect the transport coefficient in the single-file diffusion regime when the surface reflection is diffuse, and the transport coefficient in this case is largely independent of the adsorbed density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Challenges of returnable transport equipment (RTE) management continue to heighten as the popularity of their usage magnifies. Logistics companies are investigating the implementation of radio-frequency identification (RFID) technology to alleviate problems such as loss prevention and stock reduction. However, the research within this field is limited and fails to fully explore with depth, the wider network improvements that can be made to optimize the supply chain through efficient RTE management. This paper, investigates the nature of RTE network management building on current research and practices, filling a gap in the literature, through the investigation of a product-centric approach where the paradigms of “intelligent products” and “autonomous objects” are explored. A network optimizing approach with RTE management is explored, encouraging advanced research development of the RTE paradigm to align academic research with problematic areas in industry. Further research continues with the development of an agent-based software system, ready for application to a real-case study distribution network, producing quantitative results for further analysis. This is pivotal on the endeavor to developing agile support systems, fully utilizing an information-centric environment and encouraging RTE to be viewed as critical network optimizing tools rather than costly waste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed transport studies in plasmas require the solution of the time evolution of many different initial positions of test particles in the phase space of the systems to be investigated. To reduce this amount of numerical work, one would like to replace the integration of the time-continues system with a mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently identified genes located downstream (3') of the msmEF (transport encoding) gene cluster, msmGH, and located 5' of the structural genes for methanesulfonate monooxygenase (MSAMO) are described from Methylosulfonomonas methylovora. Sequence analysis of the derived polypeptide sequences encoded by these genes revealed a high degree of identity to ABC-type transporters. MsmE showed similarity to a putative periplasmic substrate binding protein, MsmF resembled an integral membraneassociated protein, and MsmG was a putative ATP-binding enzyme. MsmH was thought to be the cognate permease component of the sulfonate transport system. The close association of these putative transport genes to the MSAMO structural genes msmABCD suggested a role for these genes in transport of methanesulfonic acid (MSA) into M. methylovora. msmEFGH and msmABCD constituted two operons for the coordinated expression of MSAMO and the MSA transporter systems. Reverse-transcription-PCR analysis of msmABCD and msmEFGH revealed differential expression of these genes during growth on MSA and methanol. The msmEFGH operon was constitutively expressed, whereas MSA induced expression of msmABCD. A mutant defective in msmE had considerably slower growth rates than the wild type, thus supporting the proposed role of MsmE in the transport of MSA into M. methylovora.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz (HSZG) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description (see [10-12]). While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated in Rossendorf. In the current paper, the basic concepts for CFD modelling are described and feasibility studies are presented. The model capabilities are demonstrated via complex flow situations, where a plunging jet agitates insulation debris. © Carl Hanser Verlag, München.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the presentation the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport, and sedimentation becomes more important with regard to reactor safety research for pressurized water reactors and boiling water reactors when considering the long-term behavior of emergency core coolant systems during all types of loss-of-coolant accidents (LOCAs). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle populations that varies with size, shape, consistency, and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are, for example, the particle load on strainers and corresponding pressure drop, the sedimentation of the insulation debris in a water pool, and its possible resuspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Sciences Zittau/Görlitz. The project deals with the experimental investigation and the development of computational fluid dynamics (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University of Applied Sciences Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modelling are described and feasibility studies are presented. © Carl Hanser Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD-modeling are described and feasibility studies including the conceptual design of the experiments are presented. © 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.