934 resultados para transport effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential Transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper substrate. Atomic-scale insights into the competitive Cl/MPS adsorption are gained from in situ STM (Scanning Tunneling Microscopy) using single crystalline copper surfaces as model substrates. Type-III suppressors are a third class of suppressors. In case of type-land type-II suppressor chemistries the resulting steady-state deposition conditions are completely independent on the particular succession of additive adsorption. In contrast to that a strong dependence of the suppressing capabilities on the sequence of additive adsorption ("first comes, first serves" principle) is observed for the type-IIIsuppressor. This behavior:is explained by a suppressor barrier that impedes not only the copper inter-diffusion but also the transport of other additives (e.g. SPS) to the copper surface. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experimental verification of matrix diffusion in crystalline rocks largely relies on indirect methods performed in the laboratory. Such methods are prone to perturbations of the rock samples by collection and preparation and therefore the laboratory-derived transport properties and fluid composition might not represent in situ conditions. We investigated the effects induced by the drilling process and natural rock stress release by mass balance considerations and sensitivity analysis of analytical out-diffusion data obtained from originally saturated, large-sized drillcore material from two locations drilled using traced drilling fluid. For in situ stress-released drillcores of quartz-monzodiorite composition from the Aspo HRL, Sweden, tracer mass balance considerations and 1D and 2D diffusion modelling consistently indicated a contamination of <1% of the original pore water. This chemically disturbed zone extends to a maximum of 0.1 mm into the drillcore (61.8 mm x 180.1 mm) corresponding to about 0.66% of the total pore volume (0.77 vol.%). In contrast, the combined effects of stress release and the drilling process, which have influenced granodioritic drillcore material from 560 m below surface at Forsmark. Sweden, resulted in a maximum contamination of the derived porewater Cl(-) concentration of about 8%. The mechanically disturbed zone with modified diffusion properties covers the outermost similar to 6 mm of the drillcore (50 mm x 189 mm), whereas the chemically disturbed zone extends to a maximum of 0.3 mm based on mass balance considerations, and to 0.15 mm to 0.2 mm into the drillcore based on fitting the observed tracer data. This corresponds to a maximum of 2.4% of the total pore volume (0.62 vol.%) being affected by the drilling-fluid contamination. The proportion of rock volume affected initially by drilling fluid or subsequently with experiment water during the laboratory diffusion and re-saturation experiments depends on the size of the drillcore material and will become larger the smaller the sample used for the experiment. The results are further in support of matrix diffusion taking place in the undisturbed matrix of crystalline rocks at least in the cm range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of induction of parturition with a PGF(2)alpha analog on plasma concentration of prolactin (PRL) and its effects on colostrum concentration of IgG and chitotriosidase (ChT) activity were studied in 16 pregnant Majorera goats. Treated goats, those in which parturition was induced, had greater concentrations of PRL than control goats 24 h before parturition (P < 0.05) and 48 h after parturition (P < 0.05). Control goats had greater concentrations of PRL than treated goats 96 h after parturition (P < 0.05). Plasma concentration of IgG did not differ between groups during the experimental period, but colostrum concentrations of IgG were greater in control goats than in treated goats at parturition (P < 0.05). Plasma ChT activity decreased during the period 72 h before parturition to 24 h after parturition in control and treated goats. Time evolution after partum affected the colostrum ChT activity, being greater at parturition than after parturition in both groups (P < 0.05). In summary, concentration of IgG in colostrum is slightly diminished if parturition is induced. Induction of parturition causes an early increase in PRL, which is most likely responsible for preterm suppression of IgG transport into mammary secretions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay mineral-rich sedimentary formations are currently under investigation to evaluate their potential use as host formations for installation of deep underground disposal facilities for radioactive waste (e.g. Boom Clay (BE), Opalinus Clay (CH), Callovo-Oxfordian argillite (FR)). The ultimate safety of the corresponding repository concepts depends largely on the capacity of the host formation to limit the flux towards the biosphere of radionuclides (RN) contained in the waste to acceptably low levels. Data for diffusion-driven transfer in these formations shows extreme differences in the measured or modelled behaviour for various radionuclides, e. g. between halogen RN (Cl-36, I-129) and actinides (U-238,U-235, Np-237, Th-232, etc.), which result from major differences between RN of the effects on transport of two phenomena: diffusion and sorption. This paper describes recent research aimed at improving understanding of these two phenomena, focusing on the results of studies carried out during the EC Funmig IP on clayrocks from the above three formations and from the Boda formation (HU). Project results regarding phenomena governing water, cation and anion distribution and mobility in the pore volumes influenced by the negatively-charged surfaces of clay minerals show a convergence of the modelling results for behaviour at the molecular scale and descriptions based on electrical double layer models. Transport models exist which couple ion distribution relative to the clay-solution interface and differentiated diffusive characteristics. These codes are able to reproduce the main trends in behaviour observed experimentally, e.g. D-e(anion) < D-e(HTO) < D-e(cation) and D-e(anion) variations as a function of ionic strength and material density. These trends are also well-explained by models of transport through ideal porous matrices made up of a charged surface material. Experimental validation of these models is good as regards monovalent alkaline cations, in progress for divalent electrostatically-interacting cations (e.g. Sr2+) and still relatively poor for 'strongly sorbing', high K-d cations. Funmig results have clarified understanding of how clayrock mineral composition, and the corresponding organisation of mineral grain assemblages and their associated porosity, can affect mobile solute (anions, HTO) diffusion at different scales (mm to geological formation). In particular, advances made in the capacity to map clayrock mineral grain-porosity organisation at high resolution provide additional elements for understanding diffusion anisotropy and for relating diffusion characteristics measured at different scales. On the other hand, the results of studies focusing on evaluating the potential effects of heterogeneity on mobile species diffusion at the formation scale tend to show that there is a minimal effect when compared to a homogeneous property model. Finally, the results of a natural tracer-based study carried out on the Opalinus Clay formation increase confidence in the use of diffusion parameters measured on laboratory scale samples for predicting diffusion over geological time-space scales. Much effort was placed on improving understanding of coupled sorption-diffusion phenomena for sorbing cations in clayrocks. Results regarding sorption equilibrium in dispersed and compacted materials for weakly to moderately sorbing cations (Sr2+, Cs+, Co2+) tend to show that the same sorption model probably holds in both systems. It was not possible to demonstrate this for highly sorbing elements such as Eu(III) because of the extremely long times needed to reach equilibrium conditions, but there does not seem to be any clear reason why such elements should not have similar behaviour. Diffusion experiments carried out with Sr2+, Cs+ and Eu(III) on all of the clayrocks gave mixed results and tend to show that coupled diffusion-sorption migration is much more complex than expected, leading generally to greater mobility than that predicted by coupling a batch-determined K-d and Ficks law based on the diffusion behaviour of HTO. If the K-d measured on equivalent dispersed systems holds as was shown to be the case for Sr, Cs (and probably Co) for Opalinus Clay, these results indicate that these cations have a D-e value higher than HTO (up to a factor of 10 for Cs+). Results are as yet very limited for very moderate to strongly sorbing species (e.g. Co(II), Eu(III), Cu(II)) because of their very slow transfer characteristics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Sepsis may impair mitochondrial utilization of oxygen. Since hepatic dysfunction is a hallmark of sepsis, we hypothesized that the liver is more susceptible to mitochondrial dysfunction than the peripheral tissues, such as the skeletal muscle. We studied the effect of prolonged endotoxin infusion on liver, muscle and kidney mitochondrial respiration and on hepatosplanchnic oxygen transport and microcirculation in pigs. METHODS: 20 anesthetized pigs were randomized to receive endotoxin or saline infusion for 24 hours. Muscle, liver and kidney mitochondrial respiration was assessed. Cardiac output (thermodilution), carotid, superior mesenteric and kidney arterial, portal venous (ultrasound Doppler) and microcirculatory blood flow (laser Doppler) were measured, and systemic and regional oxygen transport and lactate exchange were calculated. RESULTS: Endotoxin infusion induced hyperdynamic shock and impaired the glutamate- and succinate-dependent mitochondrial respiratory control ratio (RCR) in the liver (glutamate: endotoxemia: median [range] 2.8 [2.3-3.8] vs. controls: 5.3 [3.8-7.0]; p<0.001; succinate: endotoxemia: 2.9 [1.9-4.3] vs. controls: 3.9 [2.6-6.3] p=0.003). While the ADP:O ratio was reduced with both substrates, maximal ATP production was impaired only in the succinate-dependent respiration. Hepatic oxygen consumption and extraction, and liver surface laser Doppler blood flow remained unchanged. Glutamate-dependent respiration in the muscle and kidney was unaffected. CONCLUSIONS: Endotoxemia reduces the efficiency of hepatic but neither skeletal muscle nor kidney mitochondrial respiration, independent of regional and microcirculatory blood flow changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The H(+) -coupled divalent metal-ion transporter DMT1 serves as both the primary entry point for iron into the body (intestinal brush-border uptake) and the route by which transferrin-associated iron is mobilized from endosomes to cytosol in erythroid precursors and other cells. Elucidating the molecular mechanisms of DMT1 will therefore increase our understanding of iron metabolism and the etiology of iron overload disorders. We expressed wild type and mutant DMT1 in Xenopus oocytes and monitored metal-ion uptake, currents and intracellular pH. DMT1 was activated in the presence of an inwardly directed H(+) electrochemical gradient. At low extracellular pH (pH(o)), H(+) binding preceded binding of Fe(2+) and its simultaneous translocation. However, DMT1 did not behave like a typical ion-coupled transporter at higher pH(o), and at pH(o) 7.4 we observed Fe(2+) transport that was not associated with H(+) influx. His(272) --> Ala substitution uncoupled the Fe(2+) and H(+) fluxes. At low pH(o), H272A mediated H(+) uniport that was inhibited by Fe(2+). Meanwhile H272A-mediated Fe(2+) transport was independent of pH(o). Our data indicate (i) that H(+) coupling in DMT1 serves to increase affinity for Fe(2+) and provide a thermodynamic driving force for Fe(2+) transport and (ii) that His-272 is critical in transducing the effects of H(+) coupling. Notably, our data also indicate that DMT1 can mediate facilitative Fe(2+) transport in the absence of a H(+) gradient. Since plasma membrane expression of DMT1 is upregulated in liver of hemochromatosis patients, this H(+) -uncoupled facilitative Fe(2+) transport via DMT1 can account for the uptake of nontransferrin-bound plasma iron characteristic of iron overload disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical studies evaluating the use of phenylephrine in septic shock are lacking. The present study was designed as a prospective, crossover pilot study to compare the effects of norepinephrine (NE) and phenylephrine on systemic and regional hemodynamics in patients with catecholamine-dependent septic shock. In 15 septic shock patients, NE (0.82 +/- 0.69 mug.kg.min) was replaced with phenylephrine (4.39 +/- 5.23 mug.kg.min) titrated to maintain MAP between 65 and 75 mmHg. After 8 h of phenylephrine infusion treatment was switched back to NE. Data from right heart catheterization, acid-base balance, thermo-dye dilution catheter, gastric tonometry, and renal function were obtained before, during, and after replacing NE with phenylephrine. Variables of systemic hemodynamics, global oxygen transport, and acid-base balance remained unchanged after replacing NE with phenylephrine except for a significant decrease in heart rate (phenylephrine, 89 +/- 18 vs. NE, 93 +/- 18 bpm; P < 0.05). However, plasma disappearance rate (phenylephrine, 13.5 +/- 7.1 vs. NE, 16.4 +/- 8.7%.min) and clearance of indocyanine green (phenylephrine, 330 +/- 197 vs. NE, 380 +/- 227mL.min.m), as well as creatinine clearance (phenylephrine, 81.3 +/- 78.4 vs. NE, 94.3 +/- 93.5 mL.min) were significantly decreased by phenylephrine infusion (each P < 0.05). In addition, phenylephrine increased arterial lactate concentrations as compared with NE infusion (1.7 +/- 1.0 vs. 1.4 +/- 1.1 mM; P < 0.05). After switching back to NE, all variables returned to values obtained before phenylephrine infusion except creatinine clearance and gastric tonometry values. Our results suggest that for the same MAP, phenylephrine causes a more pronounced hepatosplanchnic vasoconstriction as compared with NE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine system plays a key role in cellular energy buffering and energy transport, particularly in cells with high and fluctuating energy requirements like neurons. Creatine kinases are expressed in the adult and developing human brain and spinal cord, suggesting that the creatine kinase/phosphocreatine system plays a significant role in the central nervous system. Functional impairment of this system leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. Exogenous creatine supplementation has been shown to reduce neuronal cell loss in experimental paradigms of acute and chronic neurological diseases. In line with these findings, first clinical trials have shown beneficial effects of therapeutic creatine supplementation. Furthermore, creatine was reported to promote differentiation of neuronal precursor cells that might be of importance for improving neuronal cell replacement strategies. Based on these observations there is growing interest on the effects and functions of this compound in the central nervous system. This review gives a short excursion into the basics of the creatine kinase/phosphocreatine system and aims at summarizing findings and concepts on the role of creatine kinase and creatine in the central nervous system with special emphasis on pathological conditions and the positive effects of creatine supplementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite numbers of ions are present in microfluidic devices. This leads to ion limiting effects in microfluidic channels and electrode surfaces. These effects include electrode surface changes and ion concentration gradient formation across microfluidic channels, and can influence microfluidic device behavior. A literature survey on the use of electrochemical analysis techniques in micro- and nanofluidic devices was carried out, which puts into perspective the importance of electrode surface changes with regards to analytical microfluidic applications. Surface changes in Pt wire electrodes under various physiological buffer and electric field conditions were investigated using cyclic voltammetry (CV), SEM-EDS and XPS. Effects of surface changes on electrochemical analysis performance of Pt wire and thin film electrodes were investigated. Electrode surfaces were subjected to varying phosphate buffer and electric field conditions, and their CV performance was monitored. Electrode surfaces were also studied with SEM-EDS. Two studies of ion concentration gradient formation in microfluidic channels were conducted. In the first, concentration gradients of H+ and OH- ions generated on electrode surfaces were found to cause significant pH decreases in certain buffer and electric field conditions, which was also found to play a key role in iDEP manipulation of proteins. The role of electrode surface reactions in this case shows the importance of understanding electrode surface changes in microfluidic devices. In the second study of ion concentration gradient formation, Cl- ion concentration gradient formation was attempted to be quantified upon electric field application across a KCl solution. Electrokinetic transport of the Cl- indicating fluorophore MQAE contributed significantly to the fluorescence microscopy signals collected, complicating Cl- quantification as a function of position and time. It was shown that a dielectric coating on electrode surfaces is effective at preventing MQAE electrokinetic transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Echinacea purpurea extracts are used in the production of standardized herbal medicines for the prevention and treatment of upper respiratory infections. Unsaturated N-alkylamide lipids, the main constituent of E. purpurea and E. angustifolia preparations capable of activating the cannabinoid receptor type-2 (CB2) have been suggested to play a role as potential anti-inflammatory and immune-modulatory principles. Here we show that ethanolic E. purpurea radix and herba extracts produce synergistic pharmacological effects on the endocannabinoid system in vitro. Superadditive action of N-alkylamide combinations was seen at the level of intracellular calcium release as a function of CB2 receptor activation. Likewise, synergism of the radix and herba tinctures was observed in experiments measuring LPS-stimulated cytokine expression from human PBMCs. While the expression of the anti-inflammatory cytokine IL-10 was significantly superstimulated, the expression of the pro-inflammatory TNF-alpha protein was inhibited more strongly upon combination of the extracts. We show that N-alkylamides act in concert and exert pleiotropic effects modulating the endocannabinoid system by simultaneously targeting the CB2 receptor, endocannabinoid transport and degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bulk viscosity of thermalized QCD matter at temperatures above a few hundred MeV could be significantly influenced by charm quarks because their contribution arises four perturbative orders before purely gluonic effects. In an attempt to clarify the challenges of a lattice study, we determine the relevant imaginary-time correlator (of massive scalar densities) up to NLO in perturbation theory, and compare with existing data. We find discrepancies much larger than in the vector channel; this may hint, apart from the importance of taking a continuum limit, to larger non-perturbative effects in the scalar channel. We also recall how a transport peak related to the scalar density spectral function encodes non-perturbative information concerning the charm quark chemical equilibration rate close to equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-content screening led to the identification of the N-isobutylamide guineensine from Piper nigrum as novel nanomolar inhibitor (EC50 = 290 nM) of cellular uptake of the endocannabinoid anandamide (AEA). Noteworthy, guineensine did not inhibit endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) nor interact with cannabinoid receptors or fatty acid binding protein 5 (FABP5), a major cytoplasmic AEA carrier. Activity-based protein profiling showed no inhibition of serine hydrolases. Guineensine also inhibited the cellular uptake of 2-arachidonoylglycerol (2-AG). Preliminary structure–activity relationships between natural guineensine analogs indicate the importance of the alkyl chain length interconnecting the pharmacophoric isobutylamide and benzodioxol moieties for AEA cellular uptake inhibition. Guineensine dose-dependently induced cannabimimetic effects in BALB/c mice shown by strong catalepsy, hypothermia, reduced locomotion and analgesia. The catalepsy and analgesia were blocked by the CB1 receptor antagonist rimonabant (SR141716A). Guineensine is a novel plant natural product which specifically inhibits endocannabinoid uptake in different cell lines independent of FAAH. Its scaffold may be useful to identify yet unknown targets involved in endocannabinoid transport.