617 resultados para tracers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the epsilon-Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2- epsilon-Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe-Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples. The new epsilon-Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the epsilon-Nd and delta13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published delta13C gradients. Where the epsilon-Nd record differs from the nutrient-based records, changes in the pre-formed delta13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5-4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reconstruction of ocean history employs a large variety of methods with origins in the biological, chemical, and physical sciences, and uses modern statistical techniques for the interpretation of extensive and complex data sets. Various sediment properties deliver useful information for reconstructing environmental parameters. Those properties that have a close relationship to environmental parameters are called ''proxy variables'' (''proxies'' for short). Proxies are measurable descriptors for desired (but unobservable) variables. Surface water temperature is probably the most important parameter for describing the conditions of past oceans and is crucial for climate modelling. Proxies for temperature are: abundance of microfossils dwelling in surface waters, oxygen isotope composition of planktic foraminifers, the ratio of magnesium or strontium to calcium in calcareous shells or the ratio of certain organic molecules (e.g. alkenones produced by coccolithophorids). Surface water salinity, which is important in modelling of ocean circulation, is much more difficult to reconstruct. At present there is no established method for a direct determination of this parameter. Measurements associated with the paleochemistry of bottom waters to reconstruct bottom water age and flow are made on benthic foraminifers, ostracodes, and deep-sea corals. Important geochemical tracers are d13C and Cd/Ca ratios. When using benthic foraminifers, knowledge of the sediment depth habitat of species is crucial. Reconstructions of productivity patterns are of great interest because of important links to current patterns, mixing of water masses, wind, the global carbon cycle, and biogeography. Productivity is reflected in the flux of carbon into the sediment. There are a number of fluxes other than those of organic carbon that can be useful in assessing productivity fluctuations. Among others, carbonate and opal flux have been used, as well as particulate barite. Furthermore, microfossil assemblages contain clues to the intensity of production as some species occur preferentially in high-productivity regions while others avoid these. One marker for the fertility of sub-surface waters (that is, nutrient availability) is the carbon isotope ratio within that water (13C/12C, expressed as d13C). Carbon isotope ratios in today's ocean are negatively correlated with nitrate and phosphate contents. Another tracer of phosphate content in ocean waters is the Cd/Ca ratio. The correlation between this ratio and phosphate concentrations is quite well documented. A rather new development to obtain clues on ocean fertility (nitrate utilization) is the analysis of the 15N/14N ratio in organic matter. The fractionation dynamics are analogous to those of carbon isotopes. These various ratios are captured within the organisms growing within the tagged water. A number of reconstructions of the partial pressure of CO2 have been attempted using d13C differences between planktic and benthic foraminifers and d13C values of bulk organic material or individual organic components. To define the carbon system in sea water, two elements of the system have to be known in addition to temperature. These can be any combination of total CO2 , alkalinity, or pH. To reconstruct pH, the boron isotope composition of carbonates has been used. Ba patterns have been used to infer the distribution of alkalinity in past oceans. Information relating to atmospheric circulationand climate is transported to the ocean by wind or rivers, in the form of minerals or as plant andanimal remains. The most useful tracers in this respect are silt-sized particles and pollen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare alkalinity and total dissolved inorganic carbon (DIC) measurements made during the Transient Tracers in the Ocean, North Atlantic Study (TTO-NAS) in 1981 with modern measurements from a TTO reoccupation cruise in 2004 (M60/5). We find that the TTO-NAS alkalinity values are 3.6 ± 2.3 µmol/kg higher than modern alkalinity data tied to Certified Reference Materials. The TTO-NAS DIC values re-calculated from original alkalinity and discrete-pCO2 data using currently accepted constants are 3.8 µmol/kg higher than those reported in the revised TTO data set. This difference is reduced to 0.7 µmol/kg when our suggested correction to the TTO-NAS alkalinity is applied. These re-calculated DIC values are 2.4 µmol/kg too low relative to contemporaneous measurements made by the vacuum extraction/manometric Certified method. Application of this correction brings the TTO data into almost perfect agreement with modern measurements for slowly-ventilated deep water of the eastern Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolved barium has been shown to have the potential to distinguish Eurasian from North American (NA) river runoff. As part of the ARK-XXII/2 Polarstern expedition in summer 2007, Ba was analyzed in the Barents, Kara, Laptev seas, and the Eurasian Basins as well as the Makarov Basin up to the Alpha and Mendeleyev Ridges. By combining salinity, d18O and initial phosphate corrected for mineralization with oxygen (PO4*) or N/P ratios we identified the water mass fractions of meteoric water, sea ice meltwater, and marine waters of Atlantic as well as Pacific origin in the upper water column. In all basins inside the lower halocline layer and the Arctic intermediate waters we find Ba concentrations close to those of the Fram Strait branch of the lower halocline (41-45 nM), reflecting the composition of the incoming Atlantic water. A layer of upper halocline water (UHW) with higher Ba concentrations (45-55 nM) is identified in the Makarov Basin. Atop of the UHW, the Surface Mixed Layer (SML), including the summer and winter mixed layers, has high concentrations of Ba (58-67 nM). In the SML of the investigated area of the central Arctic the meteoric fraction can be identified by assuming a conservative behavior of Ba to be primarily of Eurasian river origin. However, in productive coastal regions biological removal compromises the use of Ba to distinguish between Eurasian and NA rivers. As a consequence, the NA river water fraction is underestimated in productive surface waters or waters that have passed a productive region, whereas this fraction is overestimated in subsurface waters containing remineralised Ba, particularly when these waters have passed productive shelf regions. Especially in the Laptev Sea and small regions in the Barents Sea, Ba concentrations are low in surface waters. In the Laptev Sea exceptionally high Ba concentrations in shelf bottom waters indicate that Ba is removed from surface waters to deep waters by biological activity enhanced by increasing ice-free conditions as well as by scavenging by organic matter of terrestrial origin. We interpret high Ba concentrations in the UHW of the Makarov Basin to result from enrichment by remineralisation in bottom waters on the shelf of the Chukchi Sea and therefore the calculated NA runoff is an artefact. We conclude that no NA runoff can be demonstrated unequivocally anywhere during our expedition with the set of tracers considered here. Small contributions of NA runoff may have been masked by Ba depletion and could only be resolved by supportive tracers on the uptake history. We thus suggest that Ba has to be used with care as it can put limits but not yield quantitative water mass distributions. Only if the extra Ba inputs exceed the cumulative biological uptake the signal can be unequivocally attributed to NA runoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide the first exploration of thallium (Tl) abundances and stable isotope compositions as potential tracers during arc lava genesis. We present a case study of lavas from the Central Island Province (CIP) of the Mariana arc, supplemented by representative sedimentary and altered oceanic crust (AOC) inputs from ODP Leg 129 Hole 801 outboard of the Mariana trench. Given the large Tl concentration contrast between the mantle and subduction inputs coupled with previously published distinctive Tl isotope signatures of sediment and AOC, the Tl isotope system has great potential to distinguish different inputs to arc lavas. Furthermore, CIP lavas have well-established inter island variability, providing excellent context for the examination of Tl as a new stable isotope tracer. In contrast to previous work (Nielsen et al., 2006b), we do not observe Tl enrichment or light epsilon 205Tl (where epsilon 205Tl is the deviation in parts per 10,000 of a sample 205Tl/203Tl ratio compared to NIST SRM 997 Tl standard) in the Jurassic-aged altered mafic ocean crust subducting outboard of the Marianas (epsilon 205Tl = - 4.4 to 0). The lack of a distinctive epsilon 205Tl signature may be related to secular changes in ocean chemistry. Sediments representative of the major lithologies from ODP Hole Leg 129 801 have 1-2 orders of magnitude of Tl enrichment compared to the CIP lavas, but do not record heavy signatures (epsilon 205Tl = - 3.0 to + 0.4), as previously found in similar sediment types (epsilon 205Tl > + 2.5; Rehkämper et al., 2004). We find a restricted range of epsilon 205Tl = - 1.8 to - 0.4 in CIP lavas, which overlaps with MORB. One lava from Guguan falls outside this range with epsilon 205Tl = + 1.2. Coupled Cs, Tl and Pb systematics of Guguan lavas suggests that this heavy Tl isotope composition may be due to preferential degassing of isotopically light Tl. In general, the low Tl concentrations and limited isotopic range in the CIP lavas is likely due to the unexpectedly narrow range of epsilon 205Tl found in Mariana subduction inputs, coupled with volcaniclastic, rather than pelagic sediment as the dominant source of Tl. Much work remains to better understand the controls on Tl processing through a subduction zone. For example, Tl could be retained in residual phengite, offering the potential exploration of Cs/Tl ratios as a slab thermometer. However, data for Tl partitioning in phengite (and other micas) is required before developing this application further. Establishing a database of Tl concentrations and stable isotopes in subduction zone lavas with different thermal parameters and sedimentary inputs is required for the future use of Tl as a subduction zone tracer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to recognize the distribution of hydrothermal tracers south of the Azores, a series of cores has been sampled during the GEOFAR cruise. The distribution of the Mn concentrations shows that the hydrothermal influence is maximum within and to the north-west of the Lucky Strike segment. North of the East-Azores Fracture Zone the sediments are enriched in Ba which could be derived from different sources. The chemical composition of the interstitial water shows that water advection is limited. Mn, Cu, Ni fluxes evaluated in one site have increased during isotopic stages 4 and 2 and the deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glacial-interglacial changes in sedimentary d15N over the last 120 kyr display a remarkably similar pattern in timing and amplitude in core records extending from the denitrification zone in the eastern tropical North Pacific (ETNP), where subsurface denitrification is active, to the Oregon margin, where no denitrification occurs today. Low d15N values (4-6 per mil) generally characterize glacial stages 2 and 4, and higher d15N values (7-10 per mil) are representative of the Holocene, millennial-scale periods within stage 3, and stage 5. The inferred synchroneity of d15N variations along the entire margin implies that the nitrate isotopic signal produced in the oxygen-poor subsurface waters in the ETNP is rapidly advected northward and recorded at sites far beyond the boundaries of the modern denitrification zone. Similar to d15N, primary production indicators (percent Corg, Ba/Al, and percent opal) show glacial-interglacial as well as millennial-scale variations along the NE Pacific margin, with higher primary production during warm periods. However, the relative phasing between d15N and paleoproduction tracers within individual records changes latitudinally. Whereas d15N and primary production vary approximately synchronously in the midlatitudes, production lags d15N in the ETNP by several kiloyears. This lag calls for a new understanding of the processes driving denitrification in the ETNP. We suggest that oxygen input by the Equatorial Undercurrent as well as local organic matter flux controls denitrification rates in the ETNP. Moreover, the differences in relative timing point to a time-transgressive development of upwelling-favorable winds along the NE Pacific margin after the last glaciation, with those in the north developing several kiloyears earlier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A geochemical study of sediments from Ocean Drilling Program Site 983 was conducted to examine low-frequency variations in carbonate content as expressed by blue-band reflectance (450-500 nm) over the last 1.2 Ma. Sedimentary percent organic carbon, percent carbonate, and excess barium (Ba[ex]) were used as the primary tools to evaluate the factors responsible for these long-term changes. We observe positive correlation between the mass-accumulation rate of various biogenic components and the mass-accumulation rate of Ba(ex), especially in sediments younger than ~600 ka. Deeper in the section (~600-1200 ka), the correlation between Ba(ex) and the other biogenic tracers is weak. The lack of correlation between Ba(ex) and biogenic carbonate likely results either from a higher supply of terrigenous material at that time (which confounds Ba[ex] estimation), or remobilization of Ba resulting from low pore-water sulfate ion concentrations, or both. Nonbiogenic sediments at Site 983, represented by Th, K2O, and the molar Ti/Al ratio, exhibit cyclic variations that represent mixing between continental and oceanic (i.e., basaltic) terrigenous sources. The timing of these cycles matches that of the major glacial-interglacial cycles, which suggests that they result from the supply of continental material as ice-rafted debris during glacial periods and fine-grained basaltic material by bottom currents during interglacial periods. Given these observations, the most likely causes for the low-frequency carbonate variations observed in the Site 983 sediments are shifts in surface productivity and, to a lesser extent, dilution by the input of terrigenous material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comprehensive biogeochemical studies including determination of isotopic composition of organic carbon in both suspended matter and surface layer (0-1 cm) bottom sediments (more than 260 determinations of d13C-Corg) were carried out for five Arctic shelf seas: White, Barents, Kara, East Siberian, and Chukchi Seas. The aim of this study is to elucidate causes that change isotopic composition of particulate organic carbon at the water-sediment boundary. It is shown that isotopic composition of organic carbon in sediments from seas with high river run-off (White, Kara, and East Siberian Seas) does not inherit isotopic composition of organic carbon in particles precipitating from the water column, but is enriched in 13C. Seas with low river run-off (Barents and Chukchi Seas) show insignificant difference between d13C-Corg values in both suspended load and sediments because of low content of isotopically light allochthonous organic matter in suspended matter. Biogeochemical studies with radioisotope tracers (14CO2, 35S, and 14CH4) revealed existence of specific microbial filter formed from heterotrophic and autotrophic organisms at the water-sediment boundary. This filter prevents mass influx of products of organic matter decomposition into the water column, as well as reduces influx of OM contained in suspended matter from water into sediments.