875 resultados para thermosensitive polymers
Resumo:
Melt viscosity is one of the main factors affecting product quality in extrusion processes particularly with regard to recycled polymers. However, due to wide variability in the physical properties of recycled feedstock, it is difficult to maintain the melt viscosity during extrusion of polymer blends and obtain good quality product without generating scrap. This research investigates the application of ultrasound and temperature control in an automatic extruder controller, which has ability to maintain constant melt viscosity from variable recycled polymer feedstock during extrusion processing. An ultrasonic modulation system has been developed and fitted to the extruder prior to the die to convey ultrasonic energy from a high power ultrasonic generator to the polymer melt. Two separate control loops have been developed to run simultaneously in one controller: the first loop controls the ultrasonic energy or temperature to maintain constant die pressure, the second loop is used to control extruder screw speed to maintain constant throughput at the extruder die. Time response and energy consumption of the control methods in real-time experiments are also investigated and reported this paper.
Resumo:
We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.
Resumo:
The aim of this paper is to develop a new extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. A closed-loop controller is developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. The experimental results of real time viscosity measurement and control using a 38mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work
Resumo:
A new homologous series of side-chain liquid crystal polymers, the poly[omega-(4-cyanoazobenzene-4'-oxy)alkyl methacrylate]s, have been prepared in which the length of the flexible alkyl spacer is varied from 3 to 12 methylene units. All the polymers exhibit liquid crystalline behaviour; specifically, crystal E, smectic A and nematic phases are observed. The glass transition temperatures decrease on increasing spacer length before reaching a limiting value at ca. 30 degrees C. The clearing temperatures exhibit an odd-even effect on varying the length and parity of the spacer. This is attributed to the change in the average shape of the side chain as the parity of the spacer is varied. This rationalization also accounts for the observed alternation in the entropy change associated with the clearing transition. A weak relaxation is observed theologically for several members of this polymer series at temperatures above their respective glass transition temperatures. This is attributed either to specific motions of the smectic layers or to 180 degrees reorientational jumps of the long axis of the mesogenic unit about the polymer backbone. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study thermodynamically stable dispersions of amorphous quinine, a model BCS class 2 therapeutic agent, within an amorphous polymeric platform (HPC), termed a solid-in-solid dispersion, were produced using hot melt extrusion. Characterisation of the pre-extrudates and extrudates was performed using hyper-differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Raman spectroscopy. Water uptake by the raw materials was determined using dynamic vapour sorption (DVS) analysis. Furthermore, the presence or absence of crystalline drug following storage at 25 °C/60% relative humidity and 40 °C/75% relative humidity in a sealed glass jar, and at 40 °C/75% relative humidity in an open glass jar for 3 months was determined using PXRD. Amorphous quinine was generated in situ during extrusion from both quinine base (5%, 10%, 20% w/w drug loading) and from quinine hydrochloride (5%, 10% w/w drug loading) and remained thermodynamically stable as a solid-in-solid dispersion within the HPC extrudates. When processed with HPC, quinine hydrochloride (20% w/w) was converted to amorphous quinine hydrochloride. Whilst stable for up to 3 months when stored under sealed conditions, this amorphous form was unstable, resulting in recrystallisation of the hydrochloride salt following storage for 1 month at 40 °C/75% relative humidity in an open glass jar. The behaviour of the amorphous quinine hydrochloride (20% w/w) HPC extrudate was related, at least in part, to the lower stability and the hygroscopic properties of this amorphous form.
Resumo:
Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200–300 s−1) and injection moulding (approximately 900 s−1). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.
Resumo:
The present invention relates to a novel class of water compatible molecularly imprinted polymers (AquaMIPs) capable of selectively binding target molecules such as riboflavin, or analogues thereof, in water or aqueous media, their synthesis and use thereof in food processing and extraction or separation processes.
Resumo:
Molecularly Imprinted Polymers (MIPs) targeting tegafur, an anti-cancer 5-fluorouracil pro-drug, have been prepared by stoichiometric imprinting using 2,6-bis(acrylamido)pyridine (BAAPy) as the functional monomer. Solution association between tegafur and BAAPy was studied by 1H NMR titration, which confirmed the formation of 1:1 complexes with an affinity constant of 574±15 M-1 ¬in CDCl3. Evaluation of the synthesised materials by HPLC and equilibrium rebinding experiments revealed high selectivity of the imprinted polymer for the pro-drug versus 5-fluorouracil and other competing analytes, with maximum imprinting factors of 25.3 and a binding capacity of 45.1 μmol g-1. The synthesised imprinted polymer was employed in solid-phase extraction of the pro-drug using an optimised protocol that included a simple wash with the porogen used in the preparation of the material. Tegafur recoveries of up to 96% were achieved from aqueous samples and 92% from urine samples spiked with the template and three competing analytes. The results demonstrate the potential of the prepared polymers in the pre-concentration of tegafur from biological samples, which could be an invaluable tool in the monitoring of patient compliance and drug uptake and excretion.
Resumo:
O cancro é uma das mais conhecidas e temidas doenças existentes e, como tal, existe um grande interesse no desenvolvimento de métodos de tratamento das afeções tumorais. Os grandes avanços da quimioterapia têm dado ótimos resultados no tratamento do cancro. Contudo, a administração de fármacos antineoplásicos não garante uma elevada eficácia pois os tecidos tumorais apresentam propriedades estruturais que dificultam o transporte de agentes terapêuticos, como a disposição heterogénea dos vasos sanguíneos, a ausência de sistema linfático funcional, as inúmeras barreiras de transporte que o fármaco enfrenta até chegar às células alvo ou a disparidade da expressão de antigénios e recetores nas próprias células. Para além disso, os agentes quimioterapêuticos exibem elevada toxicidade não específica, afetando tanto as células tumorais como as células saudáveis, o que resulta frequentemente em severos efeitos secundários. Se a dose for reduzida para diminuir estes efeitos, a eficácia do tratamento diminuirá também; por outro lado, o aumento da dose, apesar de permitir um melhor controlo do crescimento do tumor, leva também a uma maior toxicidade nos tecidos saudáveis. Para contornar este efeito têm-se desenvolvido diferentes tipos de sistemas de libertação de fármacos com o objetivo de maximizar o direcionamento para os tumores e minimizar a toxicidade sistémica. Entre estas alternativas figuram os chamados smart polymers, que são macromoléculas que sofrem rápidas e reversíveis mudanças na sua estrutura em resposta a estímulos, os quais correspondem geralmente a pequenas alterações no meio, como pH, temperatura, incidência de radiação ou presença de determinadas substâncias químicas. Assim, associando um fármaco a um destes polímeros, em geral recorrendo a técnicas de encapsulação, é possível fazer com que a libertação do fármaco ocorra apenas nas células tumorais, seja por estas apresentarem as características necessárias para alterar a estrutura dos polímeros (acidez ou temperatura diferente das células saudáveis, por exemplo) ou por se conferir externamente à zona do tumor essas mesmas características (por exemplo, incidindo radiação na zona afetada). Os smart polymers têm outras vantagens. Os fármacos conjugados com estes polímeros têm tendência para se acumularem nos tecidos tumorais devido aos altos efeitos de permeabilidade e retenção nestas células e também demonstram menor toxicidade sistémica comparativamente com o fármaco livre. Além disso, os sistemas de libertação poliméricos podem permitir o aumento do tempo de semivida plasmático e da solubilidade dos fármacos de baixo peso molecular, assim como a sua libertação controlada. Com este trabalho pretende-se estudar mais profundamente de que forma é que a utilização dos smart polymers pode aumentar a eficácia e diminuir a toxicidade sistémica das terapias anticancerígenas no tratamento de afeções tumorais.
Resumo:
AIMS: The aim of this study was to evaluate the impact of the administration of microencapsulated Lactobacillus plantarum CRL 1815 with two combinations of microbially derived polysaccharides, xanthan : gellan gum (1%:0·75%) and jamilan : gellan gum (1%:1%), on the rat faecal microbiota. METHODS AND RESULTS: A 10-day feeding study was performed for each polymer combination in groups of 16 rats fed either with placebo capsules, free or encapsulated Lact. plantarum or water. The composition of the faecal microbiota was analysed by fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Degradation of placebo capsules was detected, with increased levels of polysaccharide-degrading bacteria. Xanthan : gellan gum capsules were shown to reduce the Bifidobacterium population and increase the Clostridium histolyticum group levels, but not jamilan : gellan gum capsules. Only after administration of jamilan : gellan gum-probiotic capsules was detected a significant increase in Lactobacillus-Enterococcus group levels compared to controls (capsules and probiotic) as well as two bands were identified as Lact. plantarum in two profiles of ileum samples. CONCLUSIONS: Exopolysaccharides constitute an interesting approach for colon-targeted delivery of probiotics, where jamilan : gellan gum capsules present better biocompatibility and promising results as a probiotic carrier. SIGNIFICANCE AND IMPACT OF STUDY: This study introduces and highlights the importance of biological compatibility in the encapsulating material election, as they can modulate the gut microbiota by themselves, and the use of bacterial exopolysaccharides as a powerful source of new targeted-delivery coating material.