968 resultados para surface area


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tialite, beta-Al2TiO5, a low expansion material, has been synthesised by the combustion of corresponding metal nitrates and carbohydrazide (CH) or urea redox mixtures at 500-degrees-C. As prepared powders contained tialite, rutile, and corundum in the mole ratios of 50:25:25 (CH) and 20:40:40 (urea). The combustion derived powders, when calcined 30 min at 1300-degrees-C, gave single phase beta-tialite having a surface area of 20-25 m2 g-1 and a particle size of 0.79-1.03 mum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fine-particle NASICON family of materials, MZr2P3O12(where M = Na, K, ½Ca and ¼Zr) and NbZrP3O12, have been prepared by the combustion of aqueous heterogeneous mixtures of stoichiometric amounts of metal nitrate, zirconyl nitrate, niobium phosphate, diammonium hydrogen phosphate, ammonium perchlorate and carbohydrazide (CH) at 400 °C. The formation of NASICON materials was confirmed by powder X-ray diffraction (XRD), IR, solid-state (31P) NMR spectroscopy and thermal expansion coefficient measurements. The combustion-synthesized NASICON powders have an average agglomerate size of 9�13 µm with a specific surface area varying from 8 to 28 m2 g�1. The powders pelletized and sintered in the range 1100�1200 °C for 5 h achieved 95�97% theoretical density and showed fine-grain microstructure. The coefficient of thermal expansion of a sintered compact was measured up to 500 °C and ranged from �1.5 × 10�6°C�1 to 1.0 × 10�6°C�1 depending on the composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine-particle, sinter-active yttria has been prepared by combustion of a redox compound, Y(N2H3COO)3·3H2O and mixtures of Y(N2H3COO)3·3H2O�NH4NO3 or NH4ClO4 as well as yttrium nitrate and hydrazine-based fuels. The fineparticle nature of the combustion-derived yttria has been investigated using powder density, particle size and BET surface area measurements. The uniaxially, cold-pressed fine-particle yttria when sintered at 1450�1500 °C achieved 98% theoretical density and showed a fine-grain (1�2 µm) microstructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper correlates the reactivity of rice husk ash with its physicochemical properties such as crystallinity, surface area, microstructure, particle size distribution, porosity and solubility. These properties, in tum, are dependent on the time-temperature conditions under which the ash is prepared. It is found that the reactivity of the ash cannot be quantified by any one of these parameters alone, though they all indicate it qualitatively. Therefore, a method for quantifying this property was developed, by which the Reactivity Index is obtained. There is only a gradual change in the reactivity index of RHA with ashing temperature, as in many other properties, like surface area, porosity and total volume of gas absorbed by unit mass of the silica ash. This reactive index is found to be useful in determining the optimum ash/lime ratios required to give the best performance for RHA-lime composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Red, blue and green emitting lamp phosphors such as EU(3+) doped Y2O3 (red phosphor), EU(2+) doped Ba0.64Al12O18.64, BaMgAl10O17 and BaMg2Al16O27 (blue phosphors) and Ce0.67Tb0.33MgAl11O19 and Eu2+, Mn2+ doped BaMgAl10O17 (green phosphors) have been prepared by the combustion of the corresponding metal nitrates (oxidizer) and oxalyl dihydrazide/urea/carbohydrazide (fuel) mixtures at 400 degrees-500 degrees C within 5 min. The formation of these phosphors has been confirmed by their characteristic powder X-ray diffraction patterns and fluorescence spectra. The phosphors showed characteristic emission bands at 611 nm (red emission), 430-450 nm (blue emission) and 515-540 nm (green emission). The fine-particle nature of the combustion derived phosphors has been investigated using powder density, particle size and BET surface area measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, X = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x Image .8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coherent flame model uses the strain rate to predict reaction rate per unit flame surface area and some procedure that solves for the dynamics of flame surfaces to predict species distributions. The strainrate formula for the reaction rate is obtained from the analytical solution for a flame in a laminar, plane stagnation point flow. Here, the formula's effectiveness is examined by comparisons with data from a direct numerical simulation (DNS) of a round jetlike flow that undergoes transition to turbulence. Significant differences due to general flow features can be understood qualitatively: Model predictions are good in the braids between vortex rings, which are present in the near field of round jets, as the strain rate is extensional and reaction surfaces are isolated. In several other regions, the strain rate is compressive or flame surfaces are folded close together. There, the predictions are poor as the local flow no longer resembles the model flow. Quantitative comparisons showed some discrepancies. A modified, consistent application of the strain-rate solution did not show significant changes in the prediction of mean reaction rate distributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesoporous MnO2 is prepared from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) as a reducing as well as a structure-directing agent. The as synthesized MnO2 samples are poorly crystalline with mesoporosity having pore diameter between 8 and 40 nm. BET surface area as high as 273 m(2) g(-1) is obtained. By heating, the poorly crystalline MnO2 turns into a well crystalline form at 400 degrees C with nanorod morphology. However, the surface area decreases for the heated samples. Samples of MnO2 prepared by varying the ratio of KMnO4 and the copolymer, and also the heated samples are subjected to electrochemical characterization for supercapacitor studies. High specific capacitance values on mass basis are obtained for the as prepared mesoporous MnO2 samples. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. It is found that the use of graphitic carbon as cathode-catalyst support enhances its long-term stability in relation to non-graphitic carbon. This is because graphitic-carbon-supported- Pt (Pt/GrC) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported- Pt (Pt/Non-GrC) cathodes in PEFCs during accelerated stress test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored through cyclic voltammetry (CV), cell polarisation and impedance measurements, respectively. The degradation in performance of PEFC with Pt/GrC cathode is found to be around 10% after 70 h of AST as against 77% for Pt/Non-GrC cathode. It is noteworthy that Pt/GrC cathodes can withstand even up to 100 h of AST with nominal effect on their performance. Xray diffraction (XRD), Raman spectroscopy, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy (FE-SEM) studies before and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/GrC cathodes in relation to Pt/Non-GrC cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt-particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine particle and large surface area Cu/CeO2 catalysts of crystallite sizes in the range of 100-200 Angstrom synthesized by the solution combustion method have been investigated for NO reduction. Five percent Cu/CeO2 catalyst shows nearly 100% conversion of NO by NH3 below 300 degrees C, whereas pure ceria and Zr, Y, and Ca doped ceria show 85-95% NO conversion above 600 degrees C. Similarly NO reduction by CO has been observed over 5% Cu/CeO2 with nearly 100% conversion below 300 degrees C. Hydrocarbon (n-butane) oxidation by NO to CO2, N-2, and H2O has also been demonstrated over this catalyst below 350 degrees C making Cu/CeO2 a new NO reduction catalyst in the low temperature window of 150-350 degrees C. Kinetics of NO reduction over 5% Cu/CeO2 have also been investigated. The rate constants are in the range of 1.4 x 10(4) to 2.3 x 10(4) cm(3) g(-1) s(-1) between 170 and 300 degrees C. Cu/CeO2 catalysts are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy where Cu2+ ions are shown to be dispersed on the CeO2 surface. (C) 1999 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sintering, electrical conductivity and thermal expansion behaviour of combustion synthesised strontium substituted rare earth manganites with the general formula Ln(1-x)Sr(x)MnO(3) (Ln = Pr, Nd and Sm; x = 0, 0.16 and 0.25) have been investigated as solid oxide fuel cell cathode materials. The combustion derived rare earth manganites have surface area in the range of 13-40 m(2)/g. Strontium substitution increases the electrical conductivity values in all the rare earth manganites. With the decreasing ionic radii of rare earth ions, the conductivity value decreases. Among the rare earth manganites studied, (Pr/Nd)(0.75)Sr0.25MnO3 show high electrical conductivity ( > 100 S/cm). The thermal expansion coefficients of Pr0.75Sr0.25MnO3 and Nd0.75Sr0.25MnO3 were found to be 10.2 x 10(-6) and 10.7 x 10(-6) K-1 respectively, which is very close to that of the electrolyte (YSZ) used in solid oxide fuel cells. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine particle strontium substituted lanthanum ferrites La1-xSrxFeO3, where x = 0.0-1.0, have been synthesized by the solution combustion method using corresponding metal nitrates, oxalyl dihydrazide (ODH) or tetra formal tris azine (TFTA). Formation of La1-xSrxFeO3 was confirmed by the XRD and the fine particle nature of the ferrites investigated using SEM, particle size analysis and BET surface area measurements. La1-xSrxFeO3 (up to x = 0-0.4) exhibited low resistivity near the Neel temperatures. La1-xSrxFeO3 with x greater than or equal to 0.8 when used as bifunctional electrodes, showed oxygen evolution and reduction activity comparable with the orthoferrites prepared by the conventional solid state method. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine particles of willemite, alpha -Zn2SiO4, were prepared by both solution combustion and sol-gel methods. Both processes yield single-phase, large-surface area (26- and 78-m(2)/g), sinteractive willemite powders. Thermal evolution of crystalline phases was studied using X-ray powder diffraction patterns. The combustion method favors low-temperature formation of willemite compared to the sol-gel method. The powders, when uniaxially pressed and sintered at 1300 degreesC, achieved 78-80% theoretical density. The microstructures of the sintered body show the presence of equiaxed 0.5- to 4-mum grains. Blue pigments of willemite doped with Co2+ and Ni2+ were also prepared by the combustion process.