969 resultados para stromal reorganization
Resumo:
Growing evidence has shown a profound modification of plankton communities of the North East Atlantic and adjacent seas over the past decades. This drastic change has been attributed to a modification of the environmental conditions that regulate the dynamics and the spatial distribution of ectothermic species in the ocean. Recently, several studies have highlighted modifications of the regional climate station L4 (50° 15.00′N, 4° 13.02′W) in the Western English Channel. We here focus on the modification of the plankton community by studying the long-term, annual and seasonal changes of five zooplankton groups and eight copepod genera. We detail the main composition and the phenology of the plankton communities during four climatic periods identified at the L4 station: 1988–1994, 1995–2000, 2001–2007 and 2008–2012. Our results show that long-term environmental changes underlined by Molinero et al. (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English Channel.
Resumo:
BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.
Resumo:
The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis.
Resumo:
Ovarian sex cord-stromal tumors are infrequent and represent approximately 7% of all primary ovarian tumors. This histopathologic ovarian tumor group differs considerably from the more prevalent epithelial ovarian tumors. Although sex cord-stromal tumors present in a broad age group, the majority tend to present as a low-grade disease that usually follows a nonaggressive clinical course in younger patients. Furthermore, because the constituent cells of these tumors are engaged in ovarian steroid hormone production (e.g., androgens, estrogens, and corticoids), sex cord-stromal tumors are commonly associated with various hormone-mediated syndromes and exhibit a wide spectrum of clinical features ranging from hyperandrogenic virilizing states to hyperestrogenic manifestations. The World Health Organization sex cord-stromal tumor classification has recently been revised, and currently these tumors have been regrouped into the following clinicopathologic entities: pure stromal tumors, pure sex cord tumors, and mixed sex cord-stromal tumors. Moreover, some entities considered in the former classification (e.g., stromal luteoma, stromal tumor with minor sex cord elements, and gynandroblastoma) are no longer considered separate tumors in the current classification. Herein, we discuss and revise the ultrasonography, computed tomography, and magnetic resonance imaging characteristics of the different histopathologic types and clinicopathologic features of sex cord-stromal tumors to allow radiologists to narrow the differential diagnosis when facing ovarian tumors.
Resumo:
Pseudoangiomatous stromal hyperplasia (PASH) is a rare benign disease, characterized by abnormal proliferation of fibroglandular stroma. It was first described in 1986. The authors present a case of a twelve year-old girl with a history of kidney transplantation due to nephrotic syndrome with rapidly progressive and painful breast asymmetry with approximately six months duration. No lymphadenopathy or other signs or symptoms were associated. Ultrasound didn’t reveal specific findings. Breast magnetic resonance (MR) showed a massive heterogeneous nodular mass with regular contours and contrast enhancement. Given the degree of breast asymmetry as well as the patient’s symptoms, surgical excision of the tumor was preferred over core biopsy. Histopathological and immunohistochemical examination showed pseudoangiomatous stromal hyperplasia. The authors describe the clinical presentation, imaging and histological features as well as therapeutic approach in these patients
Resumo:
In this thesis, we studied the cross-talk between malignant cells and stromal cells, with the aim to elucidate the respective contribution to myeloid neoplasm onset and progression. First, we characterized and compared mesenchymal stromal cells (MSCs) isolated from myelodysplastic syndrome (MDS-MSCs) and acute myeloid leukemia (AML-MSCs) patients. We demonstrated that, despite some unaltered functions, patient-derived MSCs show also intrinsic, distinct functional abnormalities, which could all potentially favor a leukemia-protective bone marrow (BM) niche in vivo. Second, we investigated the ability of AML cells to modulate the AML-MSC functions. In a GEP-screening, we found that 40% of BM-derived AML samples show a higher IFN-γ expression, compared to the mean IFN-γ expression in healthy BM-derived cells. We demonstrated that in co-culture experiments, IFN-γ+ AML cells modify AML-MSC gene expression and function, inducing the up-regulation of IDO1, and consequently the generation of T regulatory cells. Finally, we wondered if the transcriptome of stromal cells could be influenced by the hematopoietic-specific alterations, i.e. Dnmt3a and Asxl1 mutations, which occur early in MDS/AML patients. We found that Dnmt3a- and Asxl1-null BM cells, when transplanted in wild-type mice, induce profound and deletion-specific modifications in the transcriptome of wild-type BM stromal cells, suggesting the ability of Dnmt3a- and Asxl1-null BM cells to shape the niche. Furthermore, we compared the transcriptome of wild-type BM stromal cells, obtained from transplantation experiments, with that of MSCs isolated from low-risk MDS patients with DNMT3A and ASXL1 mutations, and we highlighted some common modifications, which could be potentially relevant for human disease and specific for DNMT3A/ASXL1 mutations. In conclusion, this thesis pointed out that there is a bi-directional cross-talk, in which stromal cells can influence malignant cells, and in turn malignant/pre-malignant cells can alter stromal cell gene expression and function. Both mechanisms could potentially contribute to the pathogenesis of myeloid malignancies.
Resumo:
Gastrointestinal stromal tumors (GIST) are mesenchymal neoplasms frequently caused by a gain of function mutation in KIT or PDGFRα, two tyrosine kinase receptors (TKR). For this reason, they are successfully treated with imatinib, a tyrosine kinase inhibitor (TKI). However, the therapy is typically long-term ineffective due to imatinib resistance, which represents the main issue in the clinic of GISTs. Although numerous efforts have been made in the last two decades to develop novel therapies for imatinib-resistant GISTs, the approvals of multi-target TKIs have only improved the clinical outcomes modestly. Emblematic is the recent failure of ripretinib in the phase III INTRIGUE trial, decisively marking the end of the paradigm only based on the central role of KIT secondary mutations in imatinib resistance, and the consequent seeking of multi-target TKIs as the solution. Consistent with this clinical result, preclinical studies have revealed numerous mechanisms of resistance that are not targetable with multi-target TKIs, indicating that imatinib resistance is more multifaceted than initially hypothesized and explaining the modest efficacy of these latter. In this scenario, the absence of drugs capable of long-term counteracting the rise of imatinib-resistant subclones unavoidably leads to progressive disease and metastasis. In particular, the onset of metastases remarkably impacts the median overall survival and determines the most GIST-related deaths. Therefore, new therapy proposals are needed. Here, we present two project lines investigating novel strategies to counteract imatinib-resistant GISTs.
Resumo:
To determine the most adequate number and size of tissue microarray (TMA) cores for pleomorphic adenoma immunohistochemical studies. Eighty-two pleomorphic adenoma cases were distributed in 3 TMA blocks assembled in triplicate containing 1.0-, 2.0-, and 3.0-mm cores. Immunohistochemical analysis against cytokeratin 7, Ki67, p63, and CD34 were performed and subsequently evaluated with PixelCount, nuclear, and microvessel software applications. The 1.0-mm TMA presented lower results than 2.0- and 3.0-mm TMAs versus conventional whole section slides. Possibly because of an increased amount of stromal tissue, 3.0-mm cores presented a higher microvessel density. Comparing the results obtained with one, two, and three 2.0-mm cores, there was no difference between triplicate or duplicate TMAs and a single-core TMA. Considering the possible loss of cylinders during immunohistochemical reactions, 2.0-mm TMAs in duplicate are a more reliable approach for pleomorphic adenoma immunohistochemical study.
Resumo:
To evaluate the sparing of fertility and ovaries in women submitted to surgical treatment for benign adnexal tumors. Between February 2010 and January 2014, 206 patients were included in this observational study as they were submitted to surgical treatment for benign ovarian tumors at CAISM, a tertiary hospital. Fertility sparing surgery was defined as tumorectomy or unilateral salpingoophorectomy without hysterectomy in premenopausal women. Preservation of the ovary occurred when at least one ovary or part of it was mantained. Of the 206 women with benign tumors, 120 (58%) were premenopausal and 86 (42%) were postmenopausal. There were 36 (30%) ovarian germ cell tumors, 31 (26%) epithelial neoplasms and 11 (9%) sex-cord stromal tumors among premenopausal women. In the group of postmenopausal women, 35 (41%) epithelial neoplasms, 27 (31%) sex-cord stromal tumors and 8 (9%) ovarian germ cell tumors were identified. Among 36 women with non-neoplastic ovarian tumors, 21 (58%) had endometriomas and 8 (22%) functional cysts. Among 22 women with extra-ovarian tumors, uterine leiomyomatosis was the most frequent finding (50%). In the group of women who were ≤ 35 years old, 26 (57%) were treated by tumorectomy and 18 (39%) were submitted to unilateral salpingoophorectomy with sparing of the uterus and the contralateral ovary. Women who were ≤ 35 years old were more frequently operated by laparoscopy which was associated with a higher number of fertility sparing procedures when compared to laparotomy (p<0.01). Twenty-six (28%) women submitted to hysterectomy with bilateral salpingoophorectomy were premenopausal. Although there is a trend to perform only tumorectomy in women who are ≤ 35 years old, a significant number of young women is still treated by salpingoophorectomy. Among 36- to 45-year-old women, only 70% had their fertility spared, while 20% had both ovaries removed. However, whenever possible, we must try to preserve the ovaries, mainly in premenopausal women.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física