971 resultados para stress resistance
Resumo:
Background: Population antimicrobial use may influence resistance emergence. Resistance is an ecological phenomenon due to potential transmissibility. We investigated spatial and temporal patterns of ciprofloxacin (CIP) population consumption related to E. coli resistance emergence and dissemination in a major Brazilian city. A total of 4,372 urinary tract infection E. coli cases, with 723 CIP resistant, were identified in 2002 from two outpatient centres. Cases were address geocoded in a digital map. Raw CIP consumption data was transformed into usage density in DDDs by CIP selling points influence zones determination. A stochastic model coupled with a Geographical Information System was applied for relating resistance and usage density and for detecting city areas of high/low resistance risk. Results: E. coli CIP resistant cluster emergence was detected and significantly related to usage density at a level of 5 to 9 CIP DDDs. There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. Conclusions: There were clustered hot-spots and a significant global spatial variation in the residual resistance risk after allowing for usage density. The usage density of 5-9 CIP DDDs per 1,000 inhabitants within the same influence zone was the resistance triggering level. This level led to E. coli resistance clustering, proving that individual resistance emergence and dissemination was affected by antimicrobial population consumption.
Resumo:
Background: Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results: The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion: In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Resumo:
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Resumo:
Background: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.
Resumo:
Objectives: We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser(1270) are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results: Western blotting analysis showed that SS (18 h, 15 dyn/cm(2)) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra-or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser(1270) compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions: ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser(1270), consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser(1270).
Resumo:
Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.
Resumo:
It has been demonstrated that human adipose tissue-derived mesenchymal stem cells (hASCs) enhance vascular density in ischemic tissues, suggesting that they can differentiate into vascular cells or release angiogenic factors that may stimulate neoangiogenesis. Moreover, there is evidence that shear stress (SS) may activate proliferation and differentiation of embryonic and endothelial precursor stem cells into endothelial cells (ECs). In this work, we investigated the effect of laminar SS in promoting differentiation of hASCs into ECs. SS (10 dyn/cm(2) up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF, Flk-1) on hASC assayed by RT-PCR and flow cytometry. In contrast, there was a cumulative production of nitric oxide (determined by Griess Reaction) and vascular endothelial growth factor (VEGF; by ELISA) up to 96 h of SS stimulation ( NO(2)(-) in nmol/10(4) cells: static: 0.20 +/- 0.03; SS: 1.78 +/- 0.38, n = 6; VEGF in pg/10(4) cells: static: 191.31 +/- v35.29; SS: 372.80 +/- 46.74, n = 6, P < 0.05). Interestingly, the VEGF production was abrogated by 5 mM N(G)-L-nitro-arginine methyl ester (L-NAME) treatment (VEGF in pg/10(4) cells: SS: 378.80 +/- 46.74, n = 6; SS + L-NAME: 205.84 +/- 91.66, n = 4, P < 0.05). The results indicate that even though SS failed to induce EC surface markers in hASC under the tested conditions, it stimulated NO-dependent VEGF production.
Resumo:
Neospora caninum is an intracellular parasite that causes major economic impact on cattle raising farms, and infects a wide range of warm-blooded hosts worldwide. Innate immune mechanisms that lead to protection against this parasite are still unknown. In order to investigate whether myeloid differentiation factor 88 (MyD88) is required for resistance against N. caninum, genetically deficient mice (MyD88(-/-)) and wild type littermates were infected with live tachyzoites and the resistance to infection was evaluated. We found that sub-lethal tachyzoite doses induced acute mortality of MyD88(-/-) mice, which succumbed to infection due to uncontrolled parasite replication. Higher parasitism in MyD88(-/-) mice was associated with the lack of IL-12 production by dendritic cells, delayed IFN-gamma responses by NKT, CD4(+) and CD8(+) T lymphocytes, and production of high levels of IL-10. MyD88(-/-) mice replenished with IL-12 and IFN-gamma abolished susceptibility as the animals survived throughout the experimental period. We conclude that protective IFN-gamma-mediated immunity to N. caninum is dependent on initial MyD88 signaling, in a mechanism triggered by production of IL-12 by dendritic cells. Further knowledge on Toll-like receptor recognition of N. caninum antigens is encouraged, since it could generate new prophylactic and therapeutic tools to control parasite burden.
Resumo:
Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl(2), 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.
Resumo:
The main purpose of this research was to analyze the relation of the genetic polymorphisms frequently expressed by antigen-presenting cells, erythrocytes and malaria susceptibility/resistance with the human malaria infection cases. The sample used consisted of 23 Plasmodium vivax ( Pv)- and P. falciparum ( Pf)-infected patients, and 21 healthy individuals as a control group, from the Baixo Amazonas population in Para, Brazil. The Asp299Gly polymorphisms in the Toll-like receptor 4 ( TLR4), and Gly42Asp, Arg89Cys, Ala100Thr, and T-33C in the Duffy gene ( FY) were analyzed by restriction fragment length polymorphism-polymerase chain reaction. The Lys1590Glu and Arg1601Gly polymorphisms in the complement receptor type 1 (CR1) were analyzed by DNA sequencing. According to the results obtained and statistical analysis considering a significance level or alpha = 0.01, we conclude that the low heterozygote frequency (2.27%) for the Asp299Gly mutation, detected in the TLR4 gene, is not related to the Pv and Pf infections in the patients analyzed. Also, the promoter region GATA-1 analysis of the FY gene in the Pv-infected patients showed that the heterozygote frequency for the T-33C mutation (11.36% of the infected patients and 20.45% of the control patients) is not related to infection resistance. Regarding the CR1 gene, the observed heterozygote frequency (9.09%) for the Arg1601Gly mutation in Pf-infected patients when compared to heterozygote frequency in the control group (18.18%) suggests that there is no correlation with infection resistance.
Resumo:
Resistance-associated mutations (RAMs) in plasma samples from HIV-1-infected women who received antiretroviral (ARV) prophylaxis during pregnancy was assessed and correlated with the detection of RAMs in peripheral blood mononuclear cells (PMBCs). The study population was composed of HIV-1-infected women enrolled in a prospective cohort study in Latin America and the Caribbean (NISDI Perinatal Study) as of March 1, 2005, who were diagnosed with HIV-1 infection during the current pregnancy, who received ARVs during pregnancy for prevention of mother-to-child transmission of HIV-1, and who were followed through at least the 6-12 week postpartum visit. Plasma samples collected at enrollment during pregnancy and at 6-12 weeks postpartum were assayed for RAMs. Plasma results were compared to previously described PBMC results from the same study population. Of 819 enrolled subjects, 197 met the eligibility criteria. Nucleic acid amplification was accomplished in 123 plasma samples at enrollment or 6-12 weeks postpartum, and RAMs were detected in 22 (17.9%; 95% CI: 11.7-25.9%). Previous analyses had demonstrated detection of RAMs in PBMCs in 19 (16.1%). There was high concordance between RAMs detected in plasma and PBMC samples, with only eight discordant pairs. The prevalence of RAMs among these pregnant, HIV-1-infected women is high (>15%). Rates of detection of RAMs in plasma and PBMC samples were similar.
Resumo:
Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm(2)), infrared laser (780 nm, 40 mW, 1 W/cm(2)), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm(2)). All applications were punctual and performed with a spot with 0.4 mm(2) of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602850]
Resumo:
Objective: In this paper we evaluated the effect of two fluoridated agents and Nd:YAG irradiation separately and in combination on dentine resistance to erosion. Background Data: The morphological changes in dentin induced by laser treatment may reduce the progression of erosive lesions. Due to the possibility of a synergistic effect of laser with fluoride, this study was conducted. Materials and Methods: Eighty bovine dentine samples (4 x 4 mm) were randomly divided into eight groups, according to the following treatments: G1: untreated (control); G2: acidic phosphate fluoride gel (APF 1.23%) for 4 min; G3: fluoride varnish (NaF 2.26%) for 6 h; G4: 0.5 W Nd: YAG laser (250 mu sec pulse, 10 Hz, 35 J/cm(2), 30 sec); G5: 0.75 W Nd: YAG laser (52.5 J/cm(2)); G6: 1.0 W Nd: YAG laser (70 J/cm(2)); G7: APF + 0.75 W Nd: YAG laser; and G8: NaF + 0.75 W Nd: YAG laser. After the treatments, half of each dentine surface was protected with nail varnish. The samples were stored in artificial saliva (30 mL/sample) for 24 h and submitted to four erosive 1-min cycles. Between the erosive attacks, the blocks were maintained in artificial saliva for 59 min. The erosive wear was evaluated by profilometry. Results: The mean wear (+/- SD, mu m) was: G1: 1.20 +/- 0.20; G2: 0.47 +/- 0.06; G3: 0.81 +/- 0.11; G4: 1.47 +/- 0.32; G5: 1.52 +/- 0.24; G6: 1.49 +/- 0.30; G7: 0.49 +/- 0.11; and G8: 1.06 +/- 0.31 (Tukey's test, p < 0.05). Conclusions: Laser irradiation was not able to reduce dentine erosion. However, fluoride application was able to increase the dentine's resistance to erosion, and APF showed better results than fluoride varnish.
Resumo:
In the last decades there was an increase in stress at work and its effects on workers' health. These issues are still little studied in the electric utility sector. This study aims to evaluate factors associated with stress at work and to verify its associations with health status among workers of an electric company in Sao Paulo State, Brazil. A cross-sectional study was conducted with 474 subjects (87.5% of the eligible workers). Data were collected using self-reported questionnaires. A descriptive analysis, a multiple linear hierarchical regression analysis and a correlation analysis were performed. The majority of participants were males (91.1%) and the mean age was 37.5 yr. The mean score of stress level was 2.3 points (scale ranging from 1.0 to 5.0). Hierarchical multiple analyses showed that: regular practice of physical activities (p=0.025) and individual monthly income (p=0.002) were inversely associated with stress level; BMI was marginally associated with the stress level (p=0.074). The demographic characteristics were not associated with stress. Stress at work was significantly associated with physical and mental health status (p<0.001). To improve health of electric utility workers, actions are suggested to decrease stress by remuneration and an appropriate practice of physical activity aiming reduction of BMI.
Resumo:
Background: The New World screw-worm (NWS), Cochliomyia hominivorax, is one of the most important myiasis-causing flies, causing severe losses to the livestock industry. In its current geographical distribution, this species has been controlled by the application of insecticides, mainly organophosphate (OP) compounds, but a number of lineages have been identified that are resistant to such chemicals. Despite its economic importance, only limited genetic information is available for the NWS. Here, as a part of an effort to characterize the C. hominivorax genome and identify putative genes involved in insecticide resistance, we sampled its transcriptome by deep sequencing of polyadenylated transcripts using the 454 sequencing technology. Results: Deep sequencing on the 454 platform of three normalized libraries (larval, adult male and adult female) generated a total of 548,940 reads. Eighteen candidate genes coding for three metabolic detoxification enzyme families, cytochrome P450 monooxygenases, glutathione S transferases and carboxyl/cholinesterases were selected and gene expression levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Of the investigated candidates, only one gene was expressed differently between control and resistant larvae with, at least, a 10-fold down-regulation in the resistant larvae. The presence of mutations in the acetylcholinesterase (target site) and carboxylesterase E3 genes was investigated and all of the resistant flies presented E3 mutations previously associated with insecticide resistance. Conclusions: Here, we provided the largest database of NWS expressed sequence tags that is an important resource, not only for further studies on the molecular basis of the OP resistance in NWS fly, but also for functional and comparative studies among Calliphoridae flies. Among our candidates, only one gene was found differentially expressed in resistant individuals, and its role on insecticide resistance should be further investigated. Furthermore, the absence of mutations in the OP target site and the high frequency of mutant carboxylesterase E3 indicate that metabolic resistance mechanisms have evolved predominantly in this species.