776 resultados para stellate ganglion
Resumo:
PURPOSE: Transferrin (Tf) expression is enhanced by aging and inflammation in humans. We investigated the role of transferrin in glial protection. METHODS: We generated transgenic mice (Tg) carrying the complete human transferrin gene on a C57Bl/6J genetic background. We studied human (hTf) and mouse (mTf) transferrin localization in Tg and wild-type (WT) C57Bl/6J mice using immunochemistry with specific antibodies. Müller glial (MG) cells were cultured from explants and characterized using cellular retinaldehyde binding protein (CRALBP) and vimentin antibodies. They were further subcultured for study. We incubated cells with FeCl(3)-nitrilotriacetate to test for the iron-induced stress response; viability was determined by direct counting and measurement of lactate dehydrogenase (LDH) activity. Tf expression was determined by reverse transcriptase-quantitative PCR with human- or mouse-specific probes. hTf and mTf in the medium were assayed by ELISA or radioimmunoassay (RIA), respectively. RESULTS: mTf was mainly localized in retinal pigment epithelium and ganglion cell layers in retina sections of both mouse lines. hTf was abundant in MG cells. The distribution of mTf and hTf mRNA was consistent with these findings. mTf and hTf were secreted into the medium of MG cell primary cultures. Cells from Tg mice secreted hTf at a particularly high level. However, both WT and Tg cell cultures lose their ability to secrete Tf after a few passages. Tg MG cells secreting hTf were more resistant to iron-induced stress toxicity than those no longer secreted hTf. Similarly, exogenous human apo-Tf, but not human holo-Tf, conferred resistance to iron-induced stress on MG cells from WT mice. CONCLUSIONS: hTf localization in MG cells from Tg mice was reminiscent of that reported for aged human retina and age-related macular degeneration, both conditions associated with iron deposition. The role of hTf in protection against toxicity in Tg MG cells probably involves an adaptive mechanism developed in neural retina to control iron-induced stress.
Resumo:
We compared the pupil responses originating from outer versus inner retinal photoreception between patients with isolated hereditary optic neuropathy (HON, n = 8) and healthy controls (n = 8). Three different testing protocols were used. For the first two protocols, a response function of the maximal pupil contraction versus stimulus light intensity was generated and the intensity at which half of the maximal pupil contraction, the half-max intensity, was determined. For the third protocol, the pupil size after light offset, the re-dilation rate and re-dilation amplitude were calculated to assess the post-light stimulus response. Patients with HON had bilateral, symmetric optic atrophy and significant reduction of visual acuity and visual field compared to controls. There were no significant mean differences in the response curve and pupil response parameters that reflect mainly rod, cone or melanopsin activity between patients and controls. In patients, there was a significant correlation between the half-max intensity of the red light sequence and visual field loss. In conclusion, pupil responses derived from outer or inner retinal photoreception in HON patients having mild-to moderate visual dysfunction are not quantitatively different from age-matched controls. However, an association between the degree of visual field loss and the half-max intensity of the cone response suggests that more advanced stages of disease may lead to impaired pupil light reflexes.
Resumo:
Résumé Etude de la valeur pronostique de la biopsie du ganglion sentinelle dans une étude prospective monocentrique de 327 patients atteints de mélanome malin But II s'agit de confirmer la validité de la biopsie du ganglion sentinelle, d'en définir la morbidité, d'investiguer les facteurs prédictifs pour le statut du ganglion sentinelle ainsi que de déterminer les facteurs pronostiques pour la survie sans récidive et la survie spécifique liée à la maladie. Matériel et méthode D'octobre 1997 à décembre 2004, 327 patients consécutifs présentant un mélanome cutané primaire des membres, du tronc et de la tête, sans adénopathie clinique ni métastase à distance ont été inclus. La biopsie du ganglion sentinelle a été réalisée selon la triple technique (lymphoscintigraphie, colorant bleu vital et sonde de détection gamma). Les paramètres et la survie ont été évalués par différentes analyses de régression logistique multiple selon Cox et la survie évaluée selon Kaplan Meier. Résultats Vingt-trois pour cent des patients présentaient au moins un ganglion sentinelle métastatique, ce qui était associé de façon significative à l'épaisseur selon Breslow (p<0.001). Le taux de succès de la biopsie du ganglion sentinelle était de 99.1% et sa morbidité de 7.6%. Avec une durée médiane de suivi de 33 mois, la survie sans récidive à 5 ans était de 43% pour les patients avec un ganglion sentinelle positif et de 83.5% pour ceux avec un ganglion sentinelle négatif. La survie spécifique liée à la maladie à 5 ans était de 49% pour les patients avec un ganglion sentinelle positif et de 87.4% pour ceux avec un ganglion sentinelle négatif. Le taux de faux négatif de la biopsie du ganglion sentinelle était de 8.6%. L'analyse multivariée a démontré que la survie sans récidive était significativement péjorée par :l'épaisseur selon Breslow (RR=5.6, p<0.001), un ganglion sentinelle positif (RR=5.0, p<0.001), et le sexe masculin (RR=2.9, p=0.001). La survie spécifique liée à la maladie était significativement diminuée par : un ganglion sentinelle métastatique (RR=8.4, p<O.OOI), le sexe masculin (RR=6.1, p<0.001), l'épaisseur selon Breslow (RR=3.2, p=0.013), et la présence d'une ulcération (RR=2.6, p=0.015). Conclusion La biopsie du ganglion sentinelle est une procédure fiable avec une haute sensibilité (91.4%) et une faible morbidité (7.6%). L'épaisseur selon Breslow était le seul facteur prédictif significatif pour le statut du ganglion sentinelle. La survie sans récidive était péjorée selon un ordre décroissant par :l'épaisseur selon Breslow, un ganglion sentinelle métastatique, et le sexe masculin. De façon similaire la survie spécifique liée à la maladie était péjorée par : un ganglion sentinelle métastatique, le sexe masculin, l'épaisseur selon Breslow, et une ulcération. Ces données renforcent le statut du ganglion sentinelle en tant que puissant moyen pour évaluer le stade tumoral ainsi que le pronostic.
Resumo:
Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.
Resumo:
Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.
Resumo:
This study examines the proportions of regenerative and collateral sprouting to the skin after peripheral nerve injury. Methods: In the first experimental paradigm, primary afferent neurones were pre-labelled with Diamidino Yellow (DY), injected in digit 3, followed by sciatic nerve section and repair. After three months of regeneration, digit 3 was re-injected with Fast Blue (FB) to label regernating cells. Fluoro-Gold (FG) was applied to the femoral (FEM) and musculocutaneous (MC) nervers four days later to quantify their contribution to the innveration. In the second experimental paradigm, sciatic nerve was first sectioned and repaired. Three months later, the sciatic was resected, and digit 3 injected with FB. After four more days, FEM and MC were resected and FG injected in all digits. Results: Neurones in dorsal root ganglion (DRG) L5 had a higher rate of correct reinnervation of digit 3 (44-72%) than neurones in DRG L4 (14-44%). Like in control cases, only occasional axons were traced from the FEM and MC. In the second experiment, only occasional labelled neurones appeared. Conclusions: The results indicate differences in the capacity for correct peripheral sensory reinnvervation between segmental levels and that in this model collateral sprouting was practically non-existent compared to regenerative sprouting.
Resumo:
Capsule application of Diamidino Yellow (DY) to the cut end of the sciatic nerve immediately followed by capsule application of Fast Blue (FB) resulted in approximate to 95% double-labelled dorsal root ganglion neurones (DRGn) and motoneurones (Mn). Nerve injection of DY followed either immediately or 2 months later by capsule application of FB resulted in approximate to 90% double-labelled DRGn and Mn, indicating that DY and FB label similar populations of DRGn and Mn, and that insignificant DY fading occurred during this period. Inversing the order of application, however, i.e. nerve injection of FB followed immediately by capsule application of DY, resulted in double labelling in only approximate to 10% of the DRGn and Mn. These percentages increased to 70% of the DRGn and 60% of the Mn when the FB injection was followed 1 or 2 months after by the DY application, indicating that DY uptake is blocked by recent administration of FB. The results indicate that DY and FB might be useful for sequential labelling before and after nerve injury as a tool to investigate the accuracy of sensory and motor regeneration.
Resumo:
We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.
Resumo:
PURPOSE: To characterize perifoveal intraretinal cavities observed around full-thickness macular holes (MH) using en face optical coherence tomography and to establish correlations with histology of human and primate maculae. DESIGN: Retrospective nonconsecutive observational case series. METHODS: Macular en face scans of 8 patients with MH were analyzed to quantify the areas of hyporeflective spaces, and were compared with macular flat mounts and sections from 1 normal human donor eye and 2 normal primate eyes (Macaca fascicularis). Immunohistochemistry was used to study the distribution of glutamine synthetase, expressed by Müller cells, and zonula occludens-1, a tight-junction protein. RESULTS: The mean area of hyporeflective spaces was lower in the inner nuclear layer (INL) than in the complex formed by the outer plexiform (OPL) and the Henle fiber layers (HFL): 5.0 × 10(-3) mm(2) vs 15.9 × 10(-3) mm(2), respectively (P < .0001, Kruskal-Wallis test). In the OPL and HFL, cavities were elongated with a stellate pattern, whereas in the INL they were rounded and formed vertical cylinders. Immunohistochemistry confirmed that Müller cells followed a radial distribution around the fovea in the frontal plane and a "Z-shaped" course in the axial plane, running obliquely in the OPL and HFL and vertically in the inner layers. In addition, zonula occludens-1 co-localized with Müller cells within the complex of OPL and HFL, indicating junctions in between Müller cells and cone axons. CONCLUSION: The dual profile of cavities around MHs correlates with Müller cell morphology and is consistent with the hypothesis of intra- or extracellular fluid accumulation along these cells.
Resumo:
Selective reinnervation of peripheral targets after nerve injury might be assessed by injecting a first tracer in a target before nerve injury to label the original neuronal population, and applying a second tracer after the regeneration period to label the regenerated population. However, altered uptake of tracer, fading, and cell death may interfere with the results. Furthermore, if the first tracer injected remains in the target tissue, available for 're-uptake' by misdirected regenerating axons, which originally innervated another region, then the identification of the original population would be confused. With the aim of studying this problem, the sciatic nerve of adult rats was sectioned and sutured. After 3 days, to allow the distal axon to degenerate avoiding immediate retrograde transport, one of the dyes: Fast Blue (FB), Fluoro-Gold (FG) or Diamidino Yellow (DY), was injected into the tibial branch of the sciatic nerve, or in the skin of one of the denervated digits. Rats survived 2-3 months. The results showed labelled dorsal root ganglion (DRG) cells and motoneurones, indicating that late re-uptake of a first tracer occurs. This phenomenon must be considered when the model of sequential labelling is used for studying the accuracy of peripheral reinnervation.
Resumo:
In the wild, animals have developed survival strategies relying on their senses. The individual ability to identify threatening situations is crucial and leads to increase in the overall fitness of the species. Rodents, for example have developed in their nasal cavities specialized olfactory neurons implicated in the detection of volatile cues encoding for impending danger such as predator scents or alarm pheromones. In particular, the neurons of the Grueneberg ganglion (GG), an olfactory subsystem, are implicated in the detection of danger cues sharing a similar chemical signature, a heterocyclic sulfur- or nitrogen-containing motif. Here we used a "from the wild to the lab" approach to identify new molecules that are involuntarily emitted by predators and that initiate fear-related responses in the recipient animal, the putative prey. We collected urines from carnivores as sources of predator scents and first verified their impact on the blood pressure of the mice. With this approach, the urine of the mountain lion emerged as the most potent source of chemical stress. We then identified in this biological fluid, new volatile cues with characteristic GG-related fingerprints, in particular the methylated pyridine structures, 2,4-lutidine and its analogs. We finally verified their encoded danger quality and demonstrated their ability to mimic the effects of the predator urine on GG neurons, on mice blood pressure and in behavioral experiments. In summary, we were able to identify here, with the use of an integrative approach, new relevant molecules, the pyridine analogs, implicated in interspecies danger communication.
Resumo:
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. VIDEO ABSTRACT.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Resumo:
Carpal boss is an uncommon condition whose incidence is underestimated and that is frequently confused with other causes of development of tumor-like lesions on the dorsum of the wrist. From the clinical point of view, the main obstacle to its recognition is the nonspecificity of symptoms, frequently attributed to dorsal ganglion cysts, since both conditions share a similar location on the dorsum of the wrist. The assessment by ultrasonography allows for a correct diagnosis and appropriate management, with better chances of resolution of the clinical complaint and lower probability of iatrogenic worsening of the lesion. The present review is aimed at describing the different sonographic findings of carpal boss.
Resumo:
Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes to endothelial dysfunction and increased hepatic vascular tone in cirrhosis. TXA2 induces vasoconstriction by way of activation of the thromboxane-A2 /prostaglandin-endoperoxide (TP) receptor. This study investigated whether terutroban, a specific TP receptor blocker, decreases hepatic vascular tone and portal pressure in rats with cirrhosis due to carbon tetrachloride (CCl4 ) or bile duct ligation (BDL). Hepatic and systemic hemodynamics, endothelial dysfunction, liver fibrosis, hepatic Rho-kinase activity (a marker of hepatic stellate cell contraction), and the endothelial nitric oxide synthase (eNOS) signaling pathway were measured in CCl4 and BDL cirrhotic rats treated with terutroban (30 mg/kg/day) or its vehicle for 2 weeks. Terutroban reduced portal pressure in both models without producing significant changes in portal blood flow, suggesting a reduction in hepatic vascular resistance. Terutroban did not significantly change arterial pressure in CCl4 -cirrhotic rats but decreased it significantly in BDL-cirrhotic rats. In livers from CCl4 and BDL-cirrhotic terutroban-treated rats, endothelial dysfunction was improved and Rho-kinase activity was significantly reduced. In CCl4 -cirrhotic rats, terutroban reduced liver fibrosis and decreased alpha smooth muscle actin (α-SMA), collagen-I, and transforming growth factor beta messenger RNA (mRNA) expression without significant changes in the eNOS pathway. In contrast, no change in liver fibrosis was observed in BDL-cirrhotic rats but an increase in the eNOS pathway. CONCLUSION: Our data indicate that TP-receptor blockade with terutroban decreases portal pressure in cirrhosis. This effect is due to decreased hepatic resistance, which in CCl4 -cirrhotic rats was linked to decreased hepatic fibrosis, but not in BDL rats, in which the main mediator appeared to be an enhanced eNOS-dependent vasodilatation, which was not liver-selective, as it was associated with decreased arterial pressure. The potential use of terutroban for portal hypertension requires further investigation.