944 resultados para spatio-temporal dynamics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: The spatio-temporal pattern of arrhythmias in the embryonic/fetal heart subjected to a transient hypoxic or hypothermic stress remains to be established. METHODS AND RESULTS: Spontaneously beating hearts or isolated atria, ventricles, and conotruncus from 4-day-old chick embryos were subjected in vitro to 30-minute anoxia and 60-minute reoxygenation. Hearts were also submitted to 30-minute hypothermia (0-4 degrees C) and 60-minute rewarming. ECG disturbances and alterations of atrial and ventricular electromechanical delay (EMD) were systematically investigated. Baseline functional parameters were stable during at least 2 hours. Anoxia induced tachycardia, followed by bradycardia, atrial ectopy, first-, second-, and third-degree atrio-ventricular blocks and, finally, transient electromechanical arrest after 6.8 minutes, interquartile ranges (IQR) 3.1-16.2 (n = 8). Reoxygenation triggered also Wenckebach phenomenon and ventricular escape beats. At the onset of reoxygenation QT, PR, and ventricular EMD increased by 68%, 70%, and 250%, respectively, whereas atrial EMD was not altered. No fibrillations, no ventricular ectopic beats, and no electromechanical dissociation were observed. Arrhythmic activity of the isolated atria persisted throughout anoxia and upon reoxygenation, whereas activity of the isolated ventricles abruptly ceased after 5 minutes of anoxia and resumed after 5 minutes of reoxygenation. During hypothermia-rewarming, cardiac activity stopped at 17.9 degrees C, IQR 16.2-20.6 (n = 4) and resumed at the same temperature with no arrhythmias. All preparations fully recovered after 40 minutes of reoxygenation or rewarming. CONCLUSION: In the embryonic heart, arrhythmias mainly originated in the sinoatrial tissue and resembled those observed in the adult heart. Furthermore, oxygen readmission was by far more arrhythmogenic than rewarming and the chronotropic, dromotropic, and inotropic effects were fully reversible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malaria control has been directed towards regional actions where more detailed knowledge of local determinants of transmission is of primary importance. This is a short report on range distribution and biting indices for Anopheles darlingi and An. albitarsis during the dry and rainy season that follows river level variation in a savanna/alluvial forest malaria system area in the Northern Amazon Basin. Distribution range and adult biting indices were at their highest during the rainy season for both An. darlingi and An. albitarsis. During the rainy season the neighboring alluvial forest was extensively flooded. This coincided with highest rates in malaria transmission with case clustering near the river. As the river receded, anopheline distribution range and density decreased. This decrease in distribution and density corresponded to a malaria decrease in the near area. An exponential regression function was derived to permit estimations of An. darlingi distribution over specified distances. Anopheline spatio-temporal variations lead to uneven malaria case distribution and are of important implications for control strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until now, mortality atlases have been static. Most of them describe the geographical distribution of mortality using count data aggregated over time and standardized mortality rates. However, this methodology has several limitations. Count data aggregated over time produce a bias in the estimation of death rates. Moreover, this practice difficult the study of temporal changes in geographical distribution of mortality. On the other hand, using standardized mortality hamper to check differences in mortality among groups. The Interactive Mortality Atlas in Andalusia (AIMA) is an alternative to conventional static atlases. It is a dynamic Geographical Information System that allows visualizing in web-site more than 12.000 maps and 338.00 graphics related to the spatio-temporal distribution of the main death causes in Andalusia by age and sex groups from 1981. The objective of this paper is to describe the methods used for AIMA development, to show technical specifications and to present their interactivity. The system is available from the link products in www.demap.es. AIMA is the first interactive GIS that have been developed in Spain with these characteristics. Spatio-temporal Hierarchical Bayesian Models were used for statistical data analysis. The results were integrated into web-site using a PHP environment and a dynamic cartography in Flash. Thematic maps in AIMA demonstrate that the geographical distribution of mortality is dynamic, with differences among year, age and sex groups. The information nowadays provided by AIMA and the future updating will contribute to reflect on the past, the present and the future of population health in Andalusia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geographical Information Systems (GIS) facilitate access to epidemiological data through visualization and may be consulted for the development of mathematical models and analysis by spatial statistics. Variables such as land-cover, land-use, elevations, surface temperatures, rainfall etc. emanating from earth-observing satellites, complement GIS as this information allows the analysis of disease distribution based on environmental characteristics. The strength of this approach issues from the specific environmental requirements of those causative infectious agents, which depend on intermediate hosts for their transmission. The distribution of these diseases is restricted, both by the environmental requirements of their intermediate hosts/vectors and by the ambient temperature inside these hosts, which effectively govern the speed of maturation of the parasite. This paper discusses the current capabilities with regard to satellite data collection in terms of resolution (spatial, temporal and spectral) of the sensor instruments on board drawing attention to the utility of computer-based models of the Earth for epidemiological research. Virtual globes, available from Google and other commercial firms, are superior to conventional maps as they do not only show geographical and man-made features, but also allow instant import of data-sets of specific interest, e.g. environmental parameters, demographic information etc., from the Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT are functionally linked and temporally synchronized during time encoding whereas they are functionally independent and operate serially (V1 followed by V5/MT) while maintaining temporal information in working memory. These data challenge the traditional view of V1 and V5/MT as visuo-spatial features detectors and highlight the functional contribution and the temporal dynamics of these brain regions in the processing of time in millisecond range. The present project resulted in the paper entitled: 'How the visual brain encodes and keeps track of time' by Paolo Salvioni, Lysiann Kalmbach, Micah Murray and Domenica Bueti that is now submitted for publication to the Journal of Neuroscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution limits of Crocidura russula (Hermann, 1780) and C. leucodon (Hermann, 1780) were investigated during an interval of 25 years in the bottom of the Rhone valley above Lake Geneva, Switzerland (total data set: 105 spatio-temporal occurrences, 1137 shrews). In 1975, the contact zone between the two species was situated in the region of Martigny. In 1999/2000, new sampling revealed three results: (1) The contact zone showed an upward shift of about 25 km. (2) In the expanded range of C. russula, the resident species has totally disappeared (confirmed by owl pellets analysis). (3) This demonstrates a dominance of C, russula over C. leucodon. Three hypotheses which may explain the range expansion of C. russula were evaluated: (1) habitat modification favouring linear dispersal due to the construction of a highway; (2) temporal event favoured by climate fluctuations, or (3) ongoing postglacial colonisation of Europe. Hypothesis 1 was rejected, because the progression of the shrews anticipated the construction. Hypothesis 3 received only weak support because range limits of C. russula in the region of Nice have been stable for thousands of years. Therefore hypothesis 2, admitting that ongoing climate change has facilitated range expansion, is the most probable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chez les animaux, les jeunes dépendant des parents durant leur développement sont en compétition pour obtenir la nourriture, qu'ils quémandent par des cris et postures ostentatoires et se disputent physiquement. Les frères et soeurs n'ont pas la même compétitivité, en particulier s'ils diffèrent en âge, et leur niveau de faim fluctue dans le temps. Comme dans tout type de compétition, chacun doit ajuster son investissement aux rivaux, c'est à dire aux besoins et comportements de ses frères et soeurs. Dans le contexte de la famille, selon la théorie de sélection de parentèle, les jeunes bénéficient de leur survie mutuelle et donc de la propagation de la part de gènes qu'ils ont en commun. L'hypothèse de la « négociation frères-soeurs » prédit que, sous certaines conditions, les jeunes négocient entre eux la nourriture, ce qui réduit les coûts de compétition et permet de favoriser les frères et soeurs les plus affamés. La littérature actuelle se focalise sur les signaux de quémande entre enfants et parents et les interactions compétitives frères-soeurs sont étudiées principalement au sein de paires, alors que les nichées ou portées en comprennent souvent de nombreux. Cette thèse vise à mieux comprendre comment et jusqu'à quel point plusieurs jeunes ajustent mutuellement leurs signaux de besoin. C'est une question importante, étant donné que cela influence la répartition de nourriture entre eux, donc la résolution du conflit qui les oppose et à terme leur valeur évolutive. Le modèle d'étude est la chouette effraie (Tyto alba), chez laquelle jusqu'à neufs poussins émettent des milliers de cris chacun par nuit. Ils négocieraient entre eux la prochaine proie indivisible rapportée au nid avant que les parents ne reviennent : un poussin affamé crie plus qu'un autre moins affamé, ce qui dissuade ce dernier de crier en retour et par la suite de quémander la nourriture aux parents. L'investissement optimal correspondrait donc à écarter son frère en permanence vu que l'arrivée des parents est imprévisible, mais à moindre coût. Dans un premier axe, nous avons exploré au sein de dyades les mécanismes acoustiques permettant aux poussins de doser leur effort vocal durant les heures de compétition où ils sont laissés seuls au nid. Nous avons trouvé que les poussins évitent de crier simultanément, ce qui optimiserait la discrimination du nombre et de la durée de leurs cris, lesquels reflètent de façon honnête leur niveau de faim et donc leur motivation. L'alternance des cris paraît particulièrement adaptée au fait que les poussins se fient à des variations temporelles subtiles dans le rythme et la durée de leurs vocalisations pour prendre la parole. En particulier, allonger ses cris tout en criant moins dissuade efficacement le rival de répondre, ce qui permet de monopoliser la parole dans de longs « monologues ». Ces règles seraient universelles puisqu'elles ne dépendent pas de la séniorité, de la faim, ni de la parenté et les poussins répondent à un playback de façon similaire à un vrai frère. Tous ces résultats apportent la première preuve expérimentale que les juvéniles communiquent de façon honnête sur leurs besoins, ajustent activement le rythme de leurs cris et utilisent des composantes multiples de leurs vocalisations d'une façon qui réduit le coût de la compétition. De plus, il s'agit de la première démonstration que des règles de conversation régissent de longs échanges vocaux chez les animaux de façon comparable aux règles basiques observées chez l'Homme. Dans un second axe, nous avons exploré les stratégies comportementales que les poussins adoptent pour rivaliser avec plusieurs frères et soeurs, par le biais d'expériences de playback. Nous avons trouvé que les poussins mémorisent des asymétries de compétitivité entre deux individus qui dialoguent et répondent plus agressivement au moins compétitif une fois qu'ils sont confrontés à chacun isolément. Dans la même ligne, quand ils entendent un nombre variable d'individus criant à un taux variable, les poussins investissent le plus contre des rivaux moins nombreux et moins motivés. En accord avec les prédictions des modèles théoriques, les poussins de chouette effraie escaladent donc les conflits pour lesquels leur chance de gagner contrebalance le plus l'énergie dépensée. Nous révélons ainsi que 1) les jeunes frères et soeurs 'espionnent' les interactions de leurs rivaux pour évaluer leur compétitivité relative, ce qui est sans doute moins coûteux qu'une confrontation directe avec chacun, et 2) dosent leur investissement vocal en fonction du nombre de rivaux actuellement en compétition et de leur motivation de façon concomitante. Ces résultats montrent que les interactions entre frères et soeurs au nid reposent sur des mécanismes similaires à ceux observés, mais encore de façon anecdotique, chez les adultes non apparentés qui se disputent les territoires et partenaires sexuels. Cette thèse souligne donc combien il est crucial de considérer dorénavant la famille comme un réseau de communication à part entière pour mieux comprendre comment les jeunes résolvent les conflits autour du partage des ressources parentales. Plus généralement, elle révèle l'importance de la dynamique temporelle des vocalisations dans les conflits et la communication des animaux. A la lumière de nos résultats, la chouette effraie apparaît comme un modèle clé pour de futures recherches sur la résolution des conflits et la communication acoustique. - In species with parental care, offspring contest priority access to food by begging through conspicuous postures and vocalisations and by physically jockeying. Siblings differ in their competitiveness, especially in the case of age and size hierarchies, and their hunger level fluctuates in time. As in competition in general, each individual should adjust its investment to opponents that is to say to its siblings' needs and behaviours. In the particular context of family, according to kin selection theory, siblings derive extra fitness benefits from their mutual survival and hence the spreading of the genes they share. The "sibling negotiation" predicts that, under certain conditions, young would negotiate among them priority access to food, which reduces competition costs and enables promoting the most hungry siblings. To date, the literature focuses on signals of need between parents and offspring and competitive interactions (in particular among siblings) are mostly studied within pairwise interactions, yet they commonly involve more numerous rivals. This PhD aims at better understanding how and the extent to which several young siblings compete through signalling. This is important since this influences how food is allocated among them, thus the outcome of sibling rivalry and ultimately their fitness. I use the barn owl (Tyto alba) as a model, in which the one to nine nestlings emit a simple noisy call thousands of times per night. Thereby, they would negotiate among them priority access to the indivisible food next delivered prior to parents' feeding visits. A hungry nestling emits more calls than a less hungry sibling, which deters it to call in return and ultimately beg food at parents. The optimal investment thus corresponds to constantly deterring the rival to compete, given that parents' arrival is unpredictable, but at the lowest costs. In the first axis of my thesis, we explored within dyads the acoustic mechanisms by which owlets dose vocal effort when competing during the hours they are left alone. We found that owlets avoid overlapping each other's calls. This would enhance the discrimination of both call number and duration, which honestly reflect individuals' hunger level and hence motivation to compete. Such antiphony seems best adapted to the fact that siblings actually use subtle temporal variations in the rhythm and duration of their calls to take or give their turn. Owlets alternate monologs, in which lengthening calls efficiently deters the rival to respond while reducing call number. Such rules depend neither on seniority, hunger level nor kinship since nestlings responded similarly to a live sibling and an unrelated playback individual. Taken together, these findings provide the first experimental proof that dependent young honestly communicate about their need, actively adjust the timing of their calls and use multicomponent signals in a way that reduces vocal costs. Moreover, this is the first demonstration of conversational rules underlying animal long-lasting vocal exchanges comparable to the basic turn-taking signals observed in humans. In the second axis, we focused on the behavioural strategies owlets adopt to compete with more than one sibling, using playback experiments. We found that singleton bystanders memorised competitive asymmetries between two playback individuals dialoguing and responded more aggressively to the submissive one once they later faced each of both alone. Moreover, when hearing a varying number of nestlings calling at varying rates, owlets vocally invested the most towards fewer and less motivated rivals. In line with predictions from models on conflict settlement, barn owls thus escalate contests in which their chance of winning best counterbalances the energy spent. These results reveal that young socially eavesdrop on their siblings' interactions to assess their relative competitiveness at likely lower costs than direct confrontation, and dose vocal effort relative to both their number and motivation. This shows that young siblings' interactions imply mechanisms similar to those observed, yet still anecdotally, in unrelated adults that contest mates and territories. This PhD therefore highlights how crucial it is to further consider family as a communication network to better understand how siblings resolve conflicts over the share of parental resources. More generally, it provides important insights into the role of the temporal dynamics of signalling during animal contests and communication. In the light of our findings, the barn owl emerges as a key model for future research on conflict resolution and acoustic communication in animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT This thesis is composed of two main parts. The first addressed the question of whether the auditory and somatosensory systems, like their visual counterpart, comprise parallel functional pathways for processing identity and spatial attributes (so-called `what' and `where' pathways, respectively). The second part examined the independence of control processes mediating task switching across 'what' and `where' pathways in the auditory and visual modalities. Concerning the first part, electrical neuroimaging of event-related potentials identified the spatio-temporal mechanisms subserving auditory (see Appendix, Study n°1) and vibrotactile (see Appendix, Study n°2) processing during two types of blocks of trials. `What' blocks varied stimuli in their frequency independently of their location.. `Where' blocks varied the same stimuli in their location independently of their frequency. Concerning the second part (see Appendix, Study n°3), a psychophysical task-switching paradigm was used to investigate the hypothesis that the efficacy of control processes depends on the extent of overlap between the neural circuitry mediating the different tasks at hand, such that more effective task preparation (and by extension smaller switch costs) is achieved when the anatomical/functional overlap of this circuitry is small. Performance costs associated with switching tasks and/or switching sensory modalities were measured. Tasks required the analysis of either the identity or spatial location of environmental objects (`what' and `where' tasks, respectively) that were presented either visually or acoustically on any given trial. Pretrial cues informed participants of the upcoming task, but not of the sensory modality. - In the audio-visual domain, the results showed that switch costs between tasks were significantly smaller when the sensory modality of the task switched versus when it repeated. In addition, switch costs between the senses were correlated only when the sensory modality of the task repeated across trials and not when it switched. The collective evidence not only supports the independence of control processes mediating task switching and modality switching, but also the hypothesis that switch costs reflect competitive interterence between neural circuits that in turn can be diminished when these neural circuits are distinct. - In the auditory and somatosensory domains, the findings show that a segregation of location vs. recognition information is observed across sensory systems and that these happen around 100ms for both sensory modalities. - Also, our results show that functionally specialized pathways for audition and somatosensation involve largely overlapping brain regions, i.e. posterior superior and middle temporal cortices and inferior parietal areas. Both these properties (synchrony of differential processing and overlapping brain regions) probably optimize the relationships across sensory modalities. - Therefore, these results may be indicative of a computationally advantageous organization for processing spatial anal identity information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1406 I. 1407 II. 1408 III. 1410 IV. 1411 V. 1413 VI. 1416 VII. 1418 1418 References 1419 SUMMARY: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El calamar gigante Dosidicus gigas (d'Orbigny, 1835) es un depredador importante en el ecosistema del Perú. Se postula que el papel del calamar gigante varía teniendo en cuenta la talla, tiempo, hora, temperatura y distribución espacial. Para comprobar esta hipótesis se aplicó un modelo aditivo generalizado (GAM) en datos biológicos de alimentación de 4178 calamares gigantes capturados por la flota industrial pesquera a lo largo del litoral peruano (3ºS a 18ºS) desde 2 a 299 millas náuticas (mn) de distancia a la costa desde el año 2004 a 2009 realizados por el Laboratorio de Ecología Trófica del Instituto del Mar del Perú (IMARPE). La talla de los calamares estudiados fluctuó entre 14 y 112 cm de longitud de manto (LM). En total 43 item-presa fueron registrados, los grupos más importantes fueron los cefalópodos (Dosidicus gigas), Teleosteii (Photichthyidae, Myctophidae y Nomeidae) y Malacostraca crustáceos (Euphausiidae). Las presas principales fueron D. gigas (indicando canibalismo) en términos gravimétricos (% W=35.4), los otros cephalopodos en frecuencia de ocurrencia (FO=14.4), y los eufáusidos en términos de abundancia relativa (% N=62.2). Estos resultados reflejan una alta variabilidad de la dieta, y un espectro trófico similar en comparación con otras latitudes en ambos hemisferios (México y Chile). Los modelos GAM muestran que todas las variables predictoras fueron significativas en relación a la variable respuesta llenura estomacal (p <0.0001). La llenura estomacal fue mayor en los individuos juveniles, también durante la noche hubo mayor consumo, mientras no se reflejaron tendencias en la alimentación con relación a la temperatura superficial del mar (TSM), pero espacialmente se observan cambios en la dieta, aumentando el porcentaje de llenura a medida que esta especie se aleja de la costa. Por lo tanto se concluye que la dieta del calamar gigante depende de la talla y su distribución espacio-temporal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroimaging studies typically compare experimental conditions using average brain responses, thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM), which reduces the dataset to a number of representative voltage topographies. The degree of presence of these topographies across trials at specific latencies is then used to classify experimental conditions. We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we classified initial versus repeated presentations of visual objects. With minimal a priori information, the GMM model provides neurophysiologically interpretable features - vis à vis voltage topographies - as well as dynamic information about brain function. This method can in principle be applied to any ERP dataset testing the functional relevance of specific time periods for stimulus processing, the predictability of subject's behavior and cognitive states, and the discrimination between healthy and clinical populations.