991 resultados para spatial error
Resumo:
Zero correlation between measurement error and model error has been assumed in existing panel data models dealing specifically with measurement error. We extend this literature and propose a simple model where one regressor is mismeasured, allowing the measurement error to correlate with model error. Zero correlation between measurement error and model error is a special case in our model where correlated measurement error equals zero. We ask two research questions. First, we wonder if the correlated measurement error can be identified in the context of panel data. Second, we wonder if classical instrumental variables in panel data need to be adjusted when correlation between measurement error and model error cannot be ignored. Under some regularity conditions the answer is yes to both questions. We then propose a two-step estimation corresponding to the two questions. The first step estimates correlated measurement error from a reverse regression; and the second step estimates usual coefficients of interest using adjusted instruments.
Performance on a Virtual Reality Angled Laparoscope Task Correlates with Spatial Ability of Trainees
Resumo:
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Resumo:
Report for the scientific sojourn carried out at the University of California at Berkeley, from September to December 2007. Environmental niche modelling (ENM) techniques are powerful tools to predict species potential distributions. In the last ten years, a plethora of novel methodological approaches and modelling techniques have been developed. During three months, I stayed at the University of California, Berkeley, working under the supervision of Dr. David R. Vieites. The aim of our work was to quantify the error committed by these techniques, but also to test how an increase in the sample size affects the resultant predictions. Using MaxEnt software we generated distribution predictive maps, from different sample sizes, of the Eurasian quail (Coturnix coturnix) in the Iberian Peninsula. The quail is a generalist species from a climatic point of view, but an habitat specialist. The resultant distribution maps were compared with the real distribution of the species. This distribution was obtained from recent bird atlases from Spain and Portugal. Results show that ENM techniques can have important errors when predicting the species distribution of generalist species. Moreover, an increase of sample size is not necessary related with a better performance of the models. We conclude that a deep knowledge of the species’ biology and the variables affecting their distribution is crucial for an optimal modelling. The lack of this knowledge can induce to wrong conclusions.
Resumo:
In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.
Resumo:
This study analyzed the spatial memory capacities of rats in darkness with visual and/or olfactory cues through ontogeny. Tests were conducted with the homing board, where rats had to find the correct escape hole. Four age groups (24 days, 48 days, 3-6 months, and 12 months) were trained in 3 conditions: (a) 3 identical light cues; (b) 5 different olfactory cues; and (c) both types of cues, followed by removal of the olfactory cues. Results indicate that immature rats first take into account olfactory information but are unable to orient with only the help of discrete visual cues. Olfaction enables the use of visual information by 48-day-old rats. Visual information predominantly supports spatial cognition in adult and 12-month-old rats. Results point out cooperation between vision and olfaction for place navigation during ontogeny in rats.
Resumo:
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.
Resumo:
Impaired visual search is a hallmark of spatial neglect. When searching for an unique feature (e.g., color) neglect patients often show only slight visual field asymmetries. In contrast, when the target is defined by a combination of features (e.g., color and form) they exhibit a severe deficit of contralesional search. This finding suggests a selective impairment of the serial deployment of spatial attention. Here, we examined this deficit with a preview paradigm. Neglect patients searched for a target defined by the conjunction of shape and color, presented together with varying numbers of distracters. The presentation time was varied such that on some trials participants previewed the target together with same-shape/different-color distracters, for 300 or 600 ms prior to the appearance of additional different-shape/same-color distracters. On the remaining trials the target and all distracters were shown simultaneously. Healthy participants exhibited a serial search strategy only when all items were presented simultaneously, whereas in both preview conditions a pop-out effect was observed. Neglect patients showed a similar pattern when the target was presented in the right hemifield. In contrast, when searching for a target in the left hemifield they showed serial search in the no-preview condition, as well as with a preview of 300 ms, and partly even at 600 ms. A control experiment suggested that the failure to fully benefit from item preview was probably independent of accurate perception of time. Our results, when viewed in the context of existing literature, lead us to conclude that the visual search deficit in neglect reflects two additive factors: a biased representation of attentional priority in favor of ipsilesional information and exaggerated capture of attention by ipsilesional abrupt onsets.
Resumo:
n this paper the iterative MSFV method is extended to include the sequential implicit simulation of time dependent problems involving the solution of a system of pressure-saturation equations. To control numerical errors in simulation results, an error estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the initial time steps in simulation iterations are employed until a specified accuracy in pressure is achieved. This initial solution is then used to improve the localization assumption at later time steps. Additional iterations in pressure solution are employed only when the pressure residual becomes larger than a specified threshold value. Efficiency of the strategy and the error control criteria are numerically investigated. This paper also shows that it is possible to derive an a-priori estimate and control based on the allowed pressure-equation residual to guarantee the desired accuracy in saturation calculation.
Resumo:
A 19-month mark-release-recapture study of Neotoma micropus with sequential screening for Leishmania mexicana was conducted in Bexar County, Texas, USA. The overall prevalence rate was 14.7% and the seasonal prevalence rates ranged from 3.8 to 26.7%. Nine incident cases were detected, giving an incidence rate of 15.5/100 rats/year. Follow-up of 101 individuals captured two or more times ranged from 14 to 462 days. Persistence of L. mexicana infections averaged 190 days and ranged from 104 to 379 days. Data on dispersal, density, dispersion, and weight are presented, and the role of N. micropus as a reservoir host for L. mexicana is discussed.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.