861 resultados para soybean transformation
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
Necrotrophic parasites of above-ground plant parts survive saprophytically, between growing seasons in host crop residues. In an experiment conducted under field conditions, the time required in months for corn and soybean residues to be completely decomposed was quantified. Residues were laid on the soil surface to simulate no-till farming. Crop debris of the two plant species collected on the harvesting day cut into pieces of 5.0cm-long and a 200g mass was added to nylon mesh bags. At monthly intervals, bags were taken to the laboratory for weighing. Corn residues were decomposed within 37.0 months and those of soybean, within 34.5 months. Hw main necrotrophic fungi diagnosed in the corn residues were Colletotrichum gramicola, Diplodia spp. and Gibberella zeae, and those in soybeans residues were Cercospora kikuchii, Colletotrichum spp, Glomerella sp. and Phomopsis spp. Thus, those periods shoulb be observed in crop rotation aimed at to eliminating contaminated residues and, consequently, the inoculum from the cultivated area.
Resumo:
Experiments were carried out in a growth chamber to evaluate the effect of spreader and uredospore concentrations on the efficiency of infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. CD 214 RR soybean cultivar was inoculated with the following polyoxyethylene sorbitane monolaurate concentrations: 0, 30, 60, 120, 240, 480 and 960 µL.L-1 water, as well as a fixed uredospore concentration of 2 x 10(4) spores.mL-1. In a second phase, the inoculum concentrations of 0, 5 x 10³, 1 x 10(4), 2 x 10(4), 4 x 10(4), 8 x 10(4) and 16 x 10(4) uredospores.mL-1 were evaluated, and the spreader concentration of 240 µL.L-1, selected in the previous experiment, was fixed. The spreader concentration of 240 µL.L-1 can be used in artificial inoculation studies, as well as up to 4 x 10(4) uredospores.mL-1. In this work, there was a correlation between uredia and lesion density. Thus, the use of lesion density is recommended to assess disease intensity for its accuracy and less time consuming. There was also a positive correlation between uredia and lesion density.
Resumo:
Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, was reported at epidemic levels in 2003/2004 and is the main soybean disease in Brazil. The aim of this study was to investigate the spread of Asian soybean rust and to quantify airborne urediniospores in the region of Campo Mourão, Paraná State, Brazil. Three experiments were conducted under field conditions during the 2007/08 and 2008/09 crop seasons. Using the disease gradient method, provided by the application of increasing levels of the fungicide tebuconazole, four Asian soybean rust epidemics at different intensities were obtained in each experiment. To quantify the urediniospores, weathercock-type spore collectors were installed during and between the two crop seasons. Disease progress curves were plotted for each epidemic, and maximum severity was estimated. The curves were fit to the logistic model, which provided higher coefficients of determination and more randomly distributed residuals plotted over time. Analyses of the area under the disease progress curve showed that the largest epidemics occurred in the 2007/2008 crop season and that the progress rates were higher for severity, even among plants protected with the fungicide. The number of urediniospores collected in the air was related to the presence of soybean plants in the cultivated crops. The quantity of urediniospores was also positively correlated to the disease severity and incidence, as well as to cumulative rainfall and favorable days for P. Pachyrhizi infection.
Resumo:
In field experiments, the density of Macrophomina phaseolina microsclerotia in root tissues of naturally colonized soybean cultivars was quantified. The density of free sclerotia on the soil was determined for plots of crop rotation (soybean-corn) and soybean monoculture soon after soybean harvest. M. phaseolina natural infection was also determined for the roots of weeds grown in the experimental area. To verify the ability of M. phaseolina to colonize dead substrates, senesced stem segments from the main plant species representing the agricultural system of southern Brazil were exposed on naturally infested soil for 30 and 60 days. To quantify the sclerotia, the methodology of Cloud and Rupe (1991) and Mengistu et al. (2007) was employed. Sclerotium density, assessed based on colony forming units (CFU), ranged from 156 to 1,108/g root tissue. Sclerotium longevity, also assessed according to CFU, was 157 days for the rotation and 163 days for the monoculture system. M. phaseolina did not colonize saprophytically any dead stem segment of Avena strigosa,Avena sativa,Hordeum vulgare,Brassica napus,Gossypium hirsutum,Secale cereale,Helianthus annus,Triticosecalerimpaui, and Triticum aestivum. Mp was isolated from infected root tissues of Amaranthus viridis,Bidens pilosa,Cardiospermum halicacabum,Euphorbia heterophylla,Ipomoea sp., and Richardia brasiliensis. The survival mechanisms of M. phaseolina studied in this paper met the microsclerotium longevity in soybean root tissues, free on the soil, as well as asymptomatic colonization of weeds.
Resumo:
In a survey of damages caused by soybean root rot to crops in the south of Brazil for several years, a root rot caused by Phomopsis sp has been found with increasing frequency. The primary symptoms are seen when the main root is cut longitudinally, including the death of the wood which shows white coloration and well-defined black lines that do not have a defined format. Thus, based on similarity, it has been called geographic root rot due to its aspect resembling irregular lines that separate regions on a map. In isolations, colonies and alpha spores of Phomopsis have prevailed. Pathogenicity test was done by means of inoculation in the crown of plants cultivated in a growth chamber. The geographic symptoms were reproduced in plants and the fungus Phomopsis sp. was reisolated. In soybean stems naturally infected with pod and stem blight, geographic symptoms caused by Phomopsis phaseoli are found. To the known symptoms on stems, pods and grains, that of root rot caused by P. phaseoli is now added.
Resumo:
Soybean target leaf spot, caused by the fungus Corynespora cassiicola, is controlled especially by leaf application of fungicides. In the last seasons, in the central-west region of Brazil, the disease chemical control efficiency has been low. This led to the hypothesis that the control failure could be due to the reduction or loss of the fungus sensitivity to fungicides. To clarify this fact, in vitro experiments were conducted to determine mycelial sensitivity of five C. cassiicola isolates to fungicides. Mycelial growth was assessed based on the growth of the mycelium on the culture medium, in Petri dishes. The medium potato-dextrose-agar was supplemented with the concentrations 0; 0.01; 0.1; 1; 10; 20 and 40 mg/L of the active ingredients carbendazim, cyproconazole, epoxiconazole, flutriafol and tebuconazole. The experiment was conducted and repeated twice in a controlled environment, temperature of 25±2ºC and photoperiod of 12 hours. Data on the percentage of mycelial inhibition were subjected to logarithmic regression analysis and the concentration that inhibits 50% of the mycelial growth (IC50) was calculated. Loss of sensitivity to carbendazim was observed for three fungal isolates, IC50 > 40 mg/L. Considering all five isolates, the IC50 for tebuconazole ranged from 1.89 to 2.80 mg/L, for epoxiconazol from 2.25 to 2.91, for cyproconazole from 9.21 to 20.32 mg/L, and for flutriafol from 0.77 to 2.18 mg/L. In the absence of information on the reference IC50 determined for wild isolates, the lowest values generated in our study can be used as standard to monitor the fungus sensitivity.
Resumo:
An experiment conducted in the field the action of mancozeb, a fungicide of multi-site action was tested, to control soybean rust caused by Phakopsora pachyrhizi. Its performance was compared to that of the mixture cyproconazole (DMI) + azoxystrobin (QoI). The soybean cultivar NA 7337 RR was used with a population of 400,000 plants/ha cultivated in 20m2 plots. Treatments consisted of mancozeb levels (1.5 and 2.0 kg/ha) applied four, six and eight times. The DMI + QoI mixture was applied three times at 0.3 L/ha + Nimbus. Rust severity was assessed six times in the plots and data were integrated as the area under the disease progress curve (AUDPC). The plots were harvested and grain yield was expressed as kg/ha. Data on AUDPC and yield were subjected to analysis of variance and means compared according to Turkey's test (p = 0.005). Treatments with mancozeb were superior to DMI + QoI mixture both for rust control and grain yield. Four applications of 2.0 k/ha mancozeb were more efficient than three applications of the mixture used as standard. Mancozeb has the potential to be added to fungicide mixtures in the establishment of soybean rust anti-resistance strategy.
Resumo:
ABSTRACTThe incidence and the levels of yield loss caused by the white mold of soybean (caused by the fungus Sclerotinia sclerotiorum) have increased in areas of higher altitude at Cerrado and Southern Brazil, causing yield losses of up to 60%. The aim of this study was to select saprobic fungi with the potential to control the white mold of soybean. First, in vitroantagonism screening was carried out to test eight saprobic fungi against S. sclerotiorum. Assessment of S. sclerotiorum mycelial growth was done at four and seven days after its placement on the culture medium. The isolate showing greatest antagonistic effect in all tests/assessments was Myrothecium sp. An in vivo experiment was conducted in a greenhouse and growth chamber, where plants previously treated with eight saprobic fungi were artificially inoculated with S. sclerotiorum. The fungal culture medium (potato-dextrose) and the commercial resistance inducer acibenzolar-S-methyl were used as controls. In the in vivotests, severity of the white mold was assessed at 8, 14 and 21 days after inoculation. The highest reduction percentage in the lesion length was observed for the treatment with Myrothecium sp. (70%), which has the greater potential to be used as biocontrol agent of soybean under the conditions of this experiment.
Resumo:
ABSTRACTA model to estimate yield loss caused by Asian soybean rust (ASR) (Phakopsora pachyrhizi) was developed by collecting data from field experiments during the growing seasons 2009/10 and 2010/11, in Passo Fundo, RS. The disease intensity gradient, evaluated in the phenological stages R5.3, R5.4 and R5.5 based on leaflet incidence (LI) and number of uredinium and lesions/cm2, was generated by applying azoxystrobin 60 g a.i/ha + cyproconazole 24 g a.i/ha + 0.5% of the adjuvant Nimbus. The first application occurred when LI = 25% and the remaining ones at 10, 15, 20 and 25-day intervals. Harvest occurred at physiological maturity and was followed by grain drying and cleaning. Regression analysis between the grain yield and the disease intensity assessment criteria generated 56 linear equations of the yield loss function. The greatest loss was observed in the earliest growth stage, and yield loss coefficients ranged from 3.41 to 9.02 kg/ha for each 1% LI for leaflet incidence, from 13.34 to 127.4 kg/ha/1 lesion/cm2 for lesion density and from 5.53 to 110.0 kg/ha/1 uredinium/cm2 for uredinium density.
Resumo:
ABSTRACT In experiments conducted in a growth chamber, the chronological time and the accumulated degree-days were determined for the duration of incubation, latent and infectious periods of Phakopsora pachyrhizi cultivars BRSGO 7560 and BRS 246 RR. Detached soybean leaflets were placed in gerbox-type acrylic boxes and inoculated with 20 x 103 uredospores/mL. The study was conducted at 12-h photoperiod and temperatures of 10ºC, 15ºC, 22ºC, 25ºC and 30°C for 30 days. Lesions and uredia/cm2were evaluated and the number of uredia per lesion was quantified after the beginning of sporulation. The sporulation potential was also quantified for cultivars BRSGO 7560 and BRS 246 RR. The steps of the infection process can be quantified based on both the chronological time and the accumulated heat. The cultivar BRSGO 7560 produced 4,012.8 spores/cm2 and BRS 246 RR, 7,348.4 uredospores/cm2. The largest number of uredia was produced at 25ºC in both cultivars; however, BRS 246 RR presented 372.7 uredia/cm2 and BRSGO 7560, 231.6 uredia/cm2. At 10ºC and 30°C, leaf infection did not occur in both cultivars.
Resumo:
ABSTRACT Losses due to soybean anthracnose, caused by Colletotrichum truncatum, have not been systematically quantified in the field, and the efficacy of chemical control of this disease is not known. This study shows an estimate of losses associated with the disease in soybean crops in the north of the country. Two trials with cv. M9144 RR were carried out in commercial fields in Tocantins State in the 2010/2011 and 2011/2012 growing seasons, in randomized blocks, with four replicates. Foliar applications were performed on plants at R1/R2 and R5.2 stages, employing CO2-pressurized equipment and application volume of 200 L ha-1. Nine fungicides and one untreated control were compared, and the disease gradients in the two seasons were obtained. The percentage of infected pods was calculated at the R6 stage. Grain yield ranged from 3,288 to 3,708 kg/ha in the untreated plots in 2010/2011 and 2011/2012, respectively, and from 3,282 to 4,110 kg/ha in the treated plots. In the 2010/2011 season, only azoxystrobin + cyproconazole significantly reduced the disease incidence, compared to untreated control plots, not differing from the remaining treatments. In the 2011/2012 season, there were no significant differences between treated and untreated plots. Highly significant correlations (p < 0.01) were found between yield and soybean anthracnose incidence on pods in both years (r = -0.85). For each 1% increment in the disease incidence, c. 90 kg/ha of soybean grain were lost. The current study determined that significant losses due to anthracnose occur in commercial crops in the north of the country and highlighted the limitation of chemical control as anthracnose management method.
Resumo:
The use of domain-specific languages (DSLs) has been proposed as an approach to cost-e ectively develop families of software systems in a restricted application domain. Domain-specific languages in combination with the accumulated knowledge and experience of previous implementations, can in turn be used to generate new applications with unique sets of requirements. For this reason, DSLs are considered to be an important approach for software reuse. However, the toolset supporting a particular domain-specific language is also domain-specific and is per definition not reusable. Therefore, creating and maintaining a DSL requires additional resources that could be even larger than the savings associated with using them. As a solution, di erent tool frameworks have been proposed to simplify and reduce the cost of developments of DSLs. Developers of tool support for DSLs need to instantiate, customize or configure the framework for a particular DSL. There are di erent approaches for this. An approach is to use an application programming interface (API) and to extend the basic framework using an imperative programming language. An example of a tools which is based on this approach is Eclipse GEF. Another approach is to configure the framework using declarative languages that are independent of the underlying framework implementation. We believe this second approach can bring important benefits as this brings focus to specifying what should the tool be like instead of writing a program specifying how the tool achieves this functionality. In this thesis we explore this second approach. We use graph transformation as the basic approach to customize a domain-specific modeling (DSM) tool framework. The contributions of this thesis includes a comparison of di erent approaches for defining, representing and interchanging software modeling languages and models and a tool architecture for an open domain-specific modeling framework that e ciently integrates several model transformation components and visual editors. We also present several specific algorithms and tool components for DSM framework. These include an approach for graph query based on region operators and the star operator and an approach for reconciling models and diagrams after executing model transformation programs. We exemplify our approach with two case studies MICAS and EFCO. In these studies we show how our experimental modeling tool framework has been used to define tool environments for domain-specific languages.