965 resultados para sewage sludge burning


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of industrial and municipal waste in the soil may be recommended by your corrective and fertilizer value, giving the great potential for agricultural reuse, improves physical, chemical and biological soil properties and helps to reduce the consumption of fertilizers and correctives, without contamination by heavy metals. This study aimed to evaluate the absorption of nutrients and potentially toxic elements, and their effect on the development of soybean (Glycine max (L.) Merrill) grown under No-Tillage system (NT). The work was developed in the field, at the Experimental Farm Lageado - FCA / UNESP, Botucatu (SP) in an Oxisol under tropical climate of altitude. The experimental design was randomized blocks, factorial 4x4+1, with four replications. The treatments consisted of four residues: two sewage sludge, one centrifuged and treated with quicklime (LC) and a biodigester (LB) and two industrial wastes: steel slag (E) and lime mud (Lcal) , applied in dosages of 0, 2, 4 and 8 Mg ha-1. The surface application of LC, LB, Lcal and E residues in soil under NT favored the development of soybean, with no heavy metal contamination, given the current legislation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sewage sludge, as a soil fertilizer for crop production, has become a very important agricultural input since it is rich in nutrients, adds carbon to the soil and improves its chemical, physical, and biological characteristics. The aim of this study was to evaluate the effects of sewage sludge applied as a fertilizer for two consecutive years on sunflower plant growth and productivity. The experiment was conducted at the Experimental Farm of the College of Agriculture, a unit of the São Paulo State University (UNESP), in São Manuel, state of São Paulo, Brazil. The soil where the experiment was set is a Red Oxissol. The experiment consisted of 6 treatments with 5 replications. The experimental units were distributed in the field according to a randomized complete block design. ‘HELIO 251’ was the sunflower cultivar used in the experiment. The treatments were as follows: T0: check (no nitrogen applied); T1: conventional chemical fertilization; T2: 50% of the N dose from sewage sludge and 50% from a chemical fertilizer in side dress application; T3: 100% of the N dose from sewage sludge; T4: 150% of the N dose from sewage sludge; T5: 200% of the N dose from sewage sludge. The 150% of the N dose from sewage sludge treatment caused the plants to increase in height, in stem diameter, and in number of leaves per plant. The mixture in equal proportion of sewage sludge and a chemical fertilizer (treatment T2) resulted in an achene yield higher than that of the chemical fertilizer alone (treatment T1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many extractors are used to quantify available P in soils, but few studies have assessed the availability of P in soils of the wet tropics amended with high rates of biosolids. In this study, ion exchange resin, Mehlich-1 solution, and Fe-impregnated strips were used to quantify available P in samples from an Oxisol amended with surface-applied biosolids in a long-term field experiment. The soil's maximum capacity for P adsorption was also estimated. Experimental design consisted of randomized blocks, with four treatments and three replicates. Samples of biosolids were collected every year during the experiment, from 1999 to 2002. In 1999, two applications were made before growing maize (Zea mays L.) in austral summer and winter. Treatments were: Control (no biosolids added); B (biosolids added at rates based on their total N content); B2 (biosolids added at twice the rate of B), and B4 (biosolids added at four times the rate of B). Soil samples were collected at 0- to 0.1-, 0.1- to 0.2-, and 0.2- to 0.4-m depths. Biosolids were broadcast applied and incorporated into the soil to a depth of 0.2 m using a rotary hoe. The Oxisol had a high P-adsorption capacity (around 2450 mg kg(-1)) because of its high contents of clay and Fe and Al oxides. All the extractors were effective at assessing P availability and were positively correlated among themselves. Available P soil contents correlated positively with P content in maize leaves and grains, and the resin method yielded the highest correlation with P contents in leaves and grains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sewage sludge has been used to fertilize coffee, increasing the risk of metal contamination in this crop. The aim of this work was to study the effects of Cd, Zn and Ni in adult coffee plants growing under field conditions. Seven-year-old coffee plants growing in the field received one of three;loses of Cd, Zn or Ni: 15,45 and 90 g Cd plant(-1); 35, 105 and 210 g Ni plant(-1); and 100, 300 and 600 g Zn plant(-1), with all three metals in the form of sulphate salts. After three months, we noticed good penetration of the three metals into the soil, especially in the first 50 cm, which is the region where most coffee plant roots are concentrated. Leaf concentrations of K, Ca, Mg, S, B, Cu, Fe and Mn were nor affected. N levels did not change with the application of Ni or Zn but were reduced with either 45 or 90 g Cd plant(-1). Foliar P concentrations decreased with the addition of 45 and 90 g Cd plant(-1) and 600 g Zn plant(-1). Zn levels in leaves were not affected by the application of Cd or Ni. The highest concentrations. of Zn were found in branches (30-230 mg kg(-1)), leaves (7-35 mg kg(-1)) and beam (4-6.5 mg kg(-1)); Ni was found in leaves (4-45 mg kg(-1)), branches (3-18 mg kg(-1)) and beans (1-5 mg kg(-1)); and Cd was found in branches (0-6.2 mg kg(-1)) and beans (0-1.5 mg kg(-1)) but was absent in leaves. The mean yield of two harvests was not affected by Ni, but it decreased at the highest dose of Zn (600 g plant(-1)) and the two higher doses of Cd (45 and 90 g plant(-1)). Plants died when treated with the highest dose of Cd and showed symptoms of toxicity with the highest dose of Zn. Nevertheless, based on the amounts of metal used and the results obtained, we conclude that coffee plants are highly tolerant to the three metals tested. Moreover, even at high doses, there was very little transport to the beans, which is the part consumed by humans. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zn availability in Red Latossol (Rhodic Ferralsol) of different pH amended with different rates of sewage sludge was studied by the isotopic 65Zn L value method. Soil chemical properties were found to be altered by SS addition. Zn concentration and Zn derived from SS (ZnpfSS) in plant, and Zn phytoavailability (L value), were increased with increasing SS rates. The linear correlation coefficient of plant Zn with SS rates and with L value was significant at 1% probability. The L value proved an efficient method for predicting Zn phytoavailability in sewage sludge-amended soil with different pH under the soil conditions studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a concentração de nitrogênio em plantas de milho e ao longo do perfil de um Latossolo Vermelho eutroférrico submetido a doses de lodo de esgoto e fertilizante mineral. O experimento foi instalado em delineamento experimental em blocos casualizados com 4 tratamentos (0,0; 55,0; 110,0 e 167,5 Mg.ha-1 de lodo de esgoto em doses acumuladas) e 5 repetições para um período de avaliação de 1 ano. A amostragem de solo foi realizada aos 60 dias após a emergência (d.a.e.) das plantas nas profundidades 0,0-0,1, 0,1-0,2, 0,2-0,4, 0,4-0,6, 0,6-0,8 e 0,8-1,0 m. Também aos 60, 80 e 128 d.a.e. foram coletadas, respectivamente, folha diagnose, planta inteira e grão. As maiores doses de lodo de esgoto proporcionaram maiores quantidades de nitrogênio no solo. O nitrogênio do solo, após a profundidade de 0,6 m, não diferiu entre as camadas avaliadas. Quanto maior a dose de lodo de esgoto, menor a proporção de nitrogênio em profundidade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objetivou-se, com este trabalho, avaliar o efeito residual da adubação com composto de lodo de esgoto e fosfato natural de Gafsa sobre os teores de nutrientes no solo, na planta e na produtividade do milho. O trabalho foi realizado em Cambissolo Háplico. Os tratamentos, em esquema fatorial 2 x 4, corresponderam a 2 doses de fosfato de Gafsa (0 e 90 kg ha-1 de P2O5) e 4 doses de composto de lodo de esgoto (0; 25; 50 e 75 t ha-1, em base seca). O delineamento experimental utilizado foi em blocos casualizados, com 3 repetições. Em geral, a produtividade e os teores de nutrientes no solo e na planta no segundo cultivo sucessivo de milho não foram influenciados pela adubação com fosfato natural reativo. Entretanto, a produtividade de milho e os teores de nutrientes no solo e nas folhas de milho aumentaram com a dose de composto de lodo de esgoto ao solo, sendo a dose de 75 Mg ha-1, a de maior efeito residual. A produtividade do milho é menor no segundo cultivo sucessivo em razão do empobrecimento do solo em fósforo e potássio, recomendando-se novas adubações com lodo de esgoto, a cada cultivo realizado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O lodo de esgoto é um resíduo urbano-industrial que tem causado preocupação, quanto ao uso agrícola. Sua utilização pode ser viável, após a devida suplementação potássica, em substituição a fertilizantes minerais, especialmente em culturas como a do girassol. O presente trabalho objetivou avaliar a produtividade e nutrição mineral do girassol cv. CATISSOL 01, além da fertilidade de um Latossolo Vermelho eutroférrico adubado com lodo de esgoto, em comparação à adubação mineral, por dois anos consecutivos. O experimento utilizou delineamento em blocos casualizados, com 4 tratamentos (fertilização mineral, 5 t ha-1 ano-1, 10 t ha-1 ano-1 e 20 t ha-1 ano-1 de lodo de esgoto) e 5 repetições. Foram analisadas a produtividade de grãos de girassol, a concentração de macro e micronutrientes na folha diagnóstico e a fertilidade do solo. A produtividade de sementes do girassol adubado com o resíduo, em todas as doses, foi equivalente à adubação mineral, e os teores foliares situaram-se na faixa adequada, tanto para macro quanto para micronutrientes. O uso de lodo de esgoto, com suplementação potássica, mostrou-se eficiente na substituição total ou parcial da adubação mineral, sem prejudicar a produtividade da cultura do girassol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mine tailings can be rich in sulphide minerals and may form acid mine drainage (AMD) through reaction with atmospheric oxygen and water. AMD contains elevated levels of metals and arsenic (As) that could be harmful to animals and plants. An oxygen-consuming layer of organic material and plants on top of water-covered tailings would probably reduce oxygen penetration into the tailings and thus reduce the formation of AMD. However, wetland plants have the ability to release oxygen through the roots and could thereby increase the solubility of metals and As. These elements are released into the drainage water, taken up and accumulated in the plant roots, or translocated to the shoots. The aim was to examine the effects of plant establishment on water-covered mine tailings by answering following questions: A) Is plant establishment on water-covered mine tailings possible? B) What are the metal and As uptake and translocation properties of these plants? C) How do plants affect metal and As release from mine tailings, and which are the mechanisms involved? Carex rostrata Stokes, Eriophorum angustifolium Honck., E. scheuchzeri Hoppe, Phragmites australis (Cav.) Steud., Salix phylicifolia L. and S. borealis Fr. were used as test plants. Influences of plants on the release of As, Cd, Cu, Pb, Zn and in some cases Fe in the drainage water, and plant element uptake were studied in greenhouse experiments and in the field. The results obtained demonstrate that plant establishment are possible on water-covered unweathered mine tailings, and a suitable amendment was found to be sewage sludge. On acidic, weathered tailings, a pH increasing substance such as ashes should be added to improve plant establishment. The metal and As concentrations of the plant tissue were found to be generally higher in roots than in shoots. The uptake was dependent on the metal and As concentrations of the tailings and the release of organic acids from plant roots may have influenced the uptake. The metal release from tailings into the drainage water caused by E. angustifolium was found to depend greatly on the age and chemical properties of the tailings. However, no effects of E. angustifolium on As release was found. Water from old sulphide-, metal- and As-rich tailings with low buffering capacity were positively affected by E. angustifolium by causing higher pH and lower metal concentrations. In tailings with relatively low sulphide, metal and As contents combined with a low buffering capacity, plants had the opposite impact, i.e. a reduction in pH and elevated metal levels of the drainage water. The total release of metal and As from the tailings, i.e. drainage water together with the contents in shoots and roots, was found to be similar for C. rostrata, E. angustifolium and P. australis, except for Fe and As, where the release was highest for P. australis. The differences in metal and As release from mine tailings were mainly found to be due to the release of O2 from the roots, which changes the redox potential. Release of organic acids from the roots slightly decreased the pH, although did not have any particular influence on the release of metal and As. In conclusion, as shown here, phytostabilisation may be a successful technique for remediation of mine tailings with high element and sulphide levels, and low buffering capacity.