983 resultados para second cancer, ependymoma, CNS tumor
Resumo:
The ANX7 gene is located on human chromosome 10q21, a site long hypothesized to harbor a tumor suppressor gene(s) (TSG) associated with prostate and other cancers. To test whether ANX7 might be a candidate TSG, we examined the ANX7-dependent suppression of human tumor cell growth, stage-specific ANX7 expression in 301 prostate specimens on a prostate tissue microarray, and loss of heterozygosity (LOH) of microsatellite markers at or near the ANX7 locus. Here we report that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145. Consistently, analysis of ANX7 protein expression in human prostate tumor microarrays reveals a significantly higher rate of loss of ANX7 expression in metastatic and local recurrences of hormone refractory prostate cancer as compared with primary tumors (P = 0.0001). Using four microsatellite markers at or near the ANX7 locus, and laser capture microdissected tumor cells, 35% of the 20 primary prostate tumors show LOH. The microsatellite marker closest to the ANX7 locus showed the highest rate of LOH, including one homozygous deletion. We conclude that the ANX7 gene exhibits many biological and genetic properties expected of a TSG and may play a role in prostate cancer progression.
Resumo:
Lymphocytes from blood or tumors of patients with advanced cancer did not proliferate and produced very low levels of tumor necrosis factor and IFN-γ when cultured with autologous tumor cells. Proliferation and lymphokine production dramatically increased in the presence of beads conjugated with mAbs to CD3 plus mAbs to CD28 and/or CD40, and the lymphocytes destroyed the tumor cells. Expression density of CD3 concomitantly increased from low to normal levels. Furthermore, beads providing a CD3 signal (in combination with CD28 or CD28 plus CD40) gave partial protection against the inhibitory effect of transforming growth factor type β1 on lymphocyte proliferation and production of tumor necrosis factor and IFN-γ. MHC class I-restricted cytolytic T cells lysing autologous tumor cells in a 4-h Cr51 release assay were generated when peripheral blood leukocytes were activated in the presence of autologous tumor cells and anti-CD3/CD28 or anti-CD3/CD28/CD40 beads. Experiments performed in a model system using anti-V-β1 or anti-V-β2 mAbs to activate subsets of T cells expressing restricted T cell receptor showed that lymphocytes previously activated by anti-V-β can respond to CD3 stimulation with vigorous proliferation and lymphokine production while retaining their specificity, also in the presence of transforming growth factor type β1. Our results suggest that T lymphocytes from cancer patients can proliferate and form Th1 type lymphokines in the presence of autologous tumor cell when properly activated, and that antigen released from killed tumor cells and presented by antigen-presenting cells in the cultures facilitates the selective expansion of tumor-directed, CD8+ cytolytic T cells.
Resumo:
The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.
Resumo:
The p53 protein is an attractive target for immunotherapy, because mutations in the p53 gene are the most common genetic alterations found in human tumors. These mutations result in high levels of p53 protein in the tumor cell, whereas the expression level of wild-type p53 in nonmalignant tissue is usually much lower. Several canarypox virus recombinants expressing human or murine p53 in wild-type or mutant form were constructed. Immunization with these viruses protected BALB/c mice from a challenge with an isogenic and highly tumorigenic mouse fibroblast tumor cell line expressing high levels of mutant p53. The tumor protection was equally effective regardless of whether wild-type or mutant p53 was used for the immunization, indicating that the immunologic response was not dependent on any particular p53 mutation and that immunization with this live virus vaccine works effectively against mutant p53 protein expressed in a tumor cell. In tumors escaping immunologic rejection, the expression of the p53 protein was commonly down-regulated.
Resumo:
Prostate cancer is the second leading cause of male cancer deaths in the United States. Yet, despite a large international effort, little is known about the molecular mechanisms that underlie this devastating disease. Prostate secretory epithelial cells and androgen-dependent prostate carcinomas undergo apoptosis in response to androgen deprivation and, furthermore, most prostate carcinomas become androgen independent and refractory to further therapeutic manipulations during disease progression. Definition of the genetic events that trigger apoptosis in the prostate could provide important insights into critical pathways in normal development as well as elucidate the perturbations of those key pathways in neoplastic transformation. We report the functional definition of a novel genetic locus within human chromosome 10pter-q11 that mediates both in vivo tumor suppression and in vitro apoptosis of prostatic adenocarcinoma cells. A defined fragment of human chromosome 10 was transferred via microcell fusion into a prostate adenocarcinoma cell line. Microcell hybrids containing only the region 10pter-q11 were suppressed for tumorigenicity following injection of microcell hybrids into nude mice. Furthermore, the complemented hybrids undergo programmed cell death in vitro via a mechanism that does not require nuclear localization of p53. These data functionally define a novel genetic locus, designated PAC1, for prostate adenocarcinoma 1, involved in tumor suppression of human prostate carcinoma and furthermore strongly suggest that the cell death pathway can be functionally restored in prostatic adenocarcinoma.
Resumo:
The predisposition to colon cancer is multigenetically controlled in animals and probably also in humans. We have analyzed the multigenic control of susceptibility to 1,2-dimethylhydrazine-induced colon tumors in mice by using a set of 20 homozygous CcS/Dem recombinant congenic strains, each of which contains a different random subset of approximately 12.5% of genes from the susceptible strain STS/A and 87.5% of genes from the relatively resistant strain BALB/cHeA. Some CcS/Dem strains received the alleles from the susceptible strain STS/A at one or more of the multiple colon tumor susceptibility loci and are susceptible, whereas others are resistant. Linkage analysis shows that these susceptibility genes are different from the mouse homologs of the genes known to be somatically mutated in human colon cancer (KRAS2, TP53, DCC, MCC, APC, MSH2, and probably also MLH1). Different subsets of genes control tumor numbers and size. Two colon cancer susceptibility genes, Scc1 and Scc2, map to mouse chromosome 2. The Scc1 locus has been mapped to a narrow region of 2.4 centimorgans (90% confidence interval).
Resumo:
Recoverin is a member of the EF-hand family of calcium-binding proteins involved in the transduction of light by vertebrate photoreceptors. Recoverin also was identified as an autoantigen in the degenerative disease of the retina known as cancer-associated retinopathy (CAR), a paraneoplastic syndrome whereby immunological events lead to the degeneration of photoreceptors in some individuals with cancer. In this study, we demonstrate that recoverin is expressed in the lung tumor of a CAR patient but not in similar tumors obtained from individuals without the associated retinopathy. Recoverin was identified intially by Western blot analysis of the CAR patient's biopsy tissue by using anti-recoverin antibodies generated against different regions of the recoverin molecule. In addition, cultured cells from the biopsy tissue expressed recoverin, as demonstrated by reverse transcription-PCR using RNA extracted from the cells. The immunodominant region of recoverin also was determined in this study by a solid-phase immunoassay employing overlapping heptapeptides encompassing the entire recoverin sequence. Two linear stretches of amino acids (residues 64-70, Lys-Ala-Tyr-Ala-Gln-His-Val; and 48-52, Gln-Phe-Gln-Ser-Ile) made up the major determinants. One of the same regions of the recoverin molecule (residues 64-70) also was uniquely immunopathogenic, causing photoreceptor degeneration upon immunization of Lewis rats with the corresponding peptide. These data demonstrate that the neural antigen recoverin more than likely is responsible for the immunological events associated with vision loss in some patients with cancer. These data also establish CAR as one of the few autoimmune-mediated diseases for which the specific self-antigen is known.
Resumo:
Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers.
Resumo:
Les prostaglandines modulent d’importants rôles physiologiques. Elles sont aussi impliquées dans le développement d’une variété de conditions pathologiques telles l’inflammation, la douleur et le cancer. La prostaglandine PGF2α et son récepteur (récepteur FP) se trouvent impliqué dans la modulation de nombreuses pathologies tels lors de l’accouchement préterme et le cancer colorectal. Récemment, nous avons fait partie d’un groupe de recherche ayant développé des modulateurs allostériques du récepteur FP. Dans une première étude, l’action du PGF2α sur le déclenchement des contractions myométriales a été évaluée, car peu d’information est connue sur la signalisation de cette prostaglandine lors de l’accouchement. Ainsi, nous avons utilisé un peptidomimétique de la deuxième boucle extracellulaire, dénommée PDC113.824. Nos résultats ont démontré que le PDC113.824 permettait de retarder la mise bas chez des souris gestantes, mais agissait de manière différente sur les multiples voies de signalisation de la PGF2α. Ainsi, le PDC113.824 inhibait la voie RhoA-ROCK, dépendante de l’activation de la protéine Gα12 par le. Les protéines RhoA-ROCK sont des acteurs clés dans le remodelage du cytosquelette d’actine et des contractions myométriales lors de l’accouchement. De plus, le PDC113.824 en présence de PGF2α agit comme un modulateur positif sur la voie dépendante de l’activation de la protéine Gαq. Le PDC113.824 serait donc un modulateur allostérique non compétitif possédant des actions à la fois de modulateurs positifs et négatifs sur la signalisation du récepteur FP Dans une seconde étude, des analogues du PDC113.824 ont été conçus et analysés dans un second modèle pathologique, le cancer colorectal. Ce cancer possède de hauts niveaux de récepteur FP. Nous avons donc étudié le rôle du récepteur FP dans le développement et la progression du cancer colorectal et l’effet de modulateurs allostériques. Il est généralement accepté que dans le cancer colorectal, la prostaglandine PGE2 permet la croissance et l’invasion tumorale, ainsi que l’angiogenèse. Toutefois, peu d’informations sont connues sur le rôle du PGF2α dans le cancer colorectal. C’est dans ce contexte que nous avons décidé d’examiner la contribution de ce récepteur dans la progression du cancer colorectal et cherché à déterminer si la modulation des fonctions du récepteur FP a un impact sur la croissance de tumeurs colorectales. Nos recherches ont révélé que l’activation du récepteur FP permet la migration et la prolifération de plusieurs lignées cellulaires humaines et murines d’adénocarcinomes colorectaux. Dans ce contexte, nos expériences ont démontré que la migration des cellules cancéreuses était dépendante de l’activation de la voie Rho. Nos résultats démontrent qu’en effet, l’activation de RhoA, une petite GTPase clé de la voie Gα12, est inhibée de façon sélective par nos composés. De plus, nos molécules allostériques sont également efficaces pour inhiber la voie de signalisation de la ß-caténine, une protéine impliquée dans la genèse du cancer colorectal. In vivo, le traitement de souris avec un des ces modulateurs a permis une inhibition effective de la croissance tumorale. Dans l’ensemble, nos résultats suggèrent donc que les modulateurs allostériques des récepteurs FP pourraient constituer une nouvelle classe de médicaments utilisés pour le traitement du cancer colorectal.
Resumo:
Primary treatment of rectal cancer was the focus of the second St. Gallen European Organisation for Research and Treatment of Cancer (EORTC) Gastrointestinal Cancer Conference. In the context of the conference, a multidisciplinary international expert panel discussed and voted on controversial issues which could not be easily answered using published evidence. Main topics included optimal pretherapeutic imaging, indication and type of neoadjuvant treatment, and the treatment strategies in advanced tumours. Here we report the key recommendations and summarise the related evidence. The treatment strategy for localised rectal cancer varies from local excision in early tumours to neoadjuvant radiochemotherapy (RCT) in combination with extended surgery in locally advanced disease. Optimal pretherapeutic staging is a key to any treatment decision. The panel recommended magnetic resonance imaging (MRI) or MRI + endoscopic ultrasonography (EUS) as mandatory staging modalities, except for early T1 cancers with an option for local excision, where EUS in addition to MRI was considered to be most important because of its superior near-field resolution. Primary surgery with total mesorectal excision was recommended by most panellists for some early tumours with limited risk of recurrence (i.e. cT1-2 or cT3a N0 with clear mesorectal fascia on MRI and clearly above the levator muscles), whereas all other stages were considered for multimodal treatment. The consensus panel recommended long-course RCT over short-course radiotherapy for most clinical situations where neoadjuvant treatment is indicated, with the exception of T3a/b N0 tumours where short-course radiotherapy or even no neoadjuvant therapy were regarded to be an option. In patients with potentially resectable tumours and synchronous liver metastases, most panel members did not see an indication to start with classical fluoropyrimidine-based RCT but rather favoured preoperative short-course radiotherapy with systemic combination chemotherapy or alternatively a liver-first resection approach in resectable metastases, which both allow optimal systemic therapy for the metastatic disease. In general, proper patient selection and discussion in an experienced multidisciplinary team was considered as crucial component of care.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Background: Tumor volume has been shown to be a prognostic factor for the response of some tumors to radiotherapy. TNM stage has prognostic value for patients treated surgically for non-small cell lung cancer (NSCLC), but its value is less clear for patients treated by nonsurgical means. This may be because tumor size is not a consistent determinant of T stage or stage group. As part of the preliminary analyses for the Trans-Tasman Radiation Oncology Group 99-05 study, the authors performed this analysis to determine to what extent stage reflects tumor volume. Methods: In this prospective multicenter observational study, patients had to have histologically proven NSCLC, no evidence of disease beyond the primary site or thoracic lymph nodes, and been planned for radical radiotherapy with or without chemotherapy. Tumor volume measurements were based on computed tomography-based treatment planning images. Results: Four hundred four patients were available for analysis. There was a strong correlation between (log) maximum tumor diameter and (log) tumor volume (r = 0.93, p < 0.001). Although there was a highly significant trend of increasing volume with increasing T stage and stage group, when tumors were categorized into four groups according to increasing volume, there was only 55% concordance with T stage and 67% concordance with stage group. Conclusions: There is limited correlation between tumor size and disease stage in patients with NSCLC. This justifies documentation and investigation of size as a potential prognostic factor independent of stage. Maximum tumor diameter may be an adequate substitute for volume as a measurement of size.
Resumo:
Background: The urokinase receptor (uPAR) is important in the process of extracellular matrix degradation occurring during cancer cell invasion and metastasis. We wished to quantify uPAR on the surfaces of normal mammary epithelial cells (HMEC) and 6 well-known breast cancer cell lines using flow cytometry. Materials and Methods: Cell surface uPAR was labelled with a monoclonal antibody, and this was detected with a florescent-labelled second antibody and accurately measured using flow cytometry. The measured fluorescent signals of the stained cells were interpolated with those of Quantum Simply Cellular bead standards to determine the number of uPAR sites per cell. Results: The breast cancer cell lines ranged from 13,700 to 50,800 uPAR sites per cell, whilst HMEC cells had only 2,500 sites. Conclusions: This simple and reliable method showed that the expression of cell surface uPAR is higher in the breast cancer cell lines than in the normal mammary cells.