976 resultados para scalar scattering
Resumo:
The recent theoretical and experimental activities in positronium (Ps) scattering by atoms and molecules are reviewed with special emphasis at low energies. We critically compare the results of different groups - theoretical and experimental. The theoretical approaches considered include the R-matrix and close-coupling methods applied to Ps-H, Ps-He and Ps-Li scattering, and a coupled-channel approach with a nonlocal model potential for Ps scattering by H, He, H-2, Ne, Ar, Li, Na, K, Rb, Cs and Ps and for pickoff quenching in Ps-He scattering. Results for scattering lengths, partial. total and differential cross-sections as well as resonance and binding energies in different systems are discussed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We perform an update of our previous analysis of the constraints on possible deviations of Hb (b) over bar coupling parametrized as (m(b)/v)(a+igamma(5)b), arising from a scalar-pseudoscalar mixing, where the process e(+)e(-)-->b (b) over bar nu(ν) over bar was used. In this paper we include a complete simulation of the process e(+)e(-)-->b (b) over bare(+)e(-) and combine these results to obtain tighter bounds on the deviations of the parameters a and b from their standard model values that could be measured at the Next Linear Collider.
Resumo:
The scattering of orthopositronium (Ps) by hydrogen atoms has been investigated in a five-state coupled-channel model allowing for Ps(1s)H(2s,2p) and Ps(2s,2p)H(1s) excitations using a recently proposed electron-exchange model potential. The higher (n greater than or equal to 3) excitations and ionization of the Ps atom are calculated using the first Born approximation. Calculations are reported of scattering lengths, phase shifts. elastic, Ps and H excitation, and total cross sections. Remarkable correlations are observed between the S-wave Ps-H binding energy and the singlet scattering length, effective range, and resonance energy obtained in various model calculations. These correlations suggest that if a Ps-H dynamical model yields the correct result for one of these four observables, it is expected to lead to the correct result for the other three. The present model, which is constructed so as to reproduce the Ps-H resonance at 4.01 eV, automatically yields a Ps-H bound state at - 1.05 eV that compares well with the accurate value of - 1.067 eV. The model leads to a singlet scattering length of 3.72a(0) and effective range of 1.67a(0), whereas the correlations suggest the precise values of 3.50a(0) and 1.65a(0) for these observables, respectively. [S1050-2947(99)07703-3].
Resumo:
The scattering of ortho-positronium (Ps) by H-2 has been investigated using a three-Ps-state (Ps(1s,2s, 2p)H-2(X (1)Sigma(g)(+))) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B (1)Sigma(u)(+) and b (3)Sigma(u)(+) excitations of H-2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H-2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.
Resumo:
The goal of this article is to derive the Feynman rules involving single charginos, neutralinos, double charged gauge bosons, and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we calculate the production of double charged charginos with neutralinos and also the production of a pair of single charged charginos, both in an electron-electron linear collider.
Resumo:
The scattering of positrons off sodium targets has been investigated using the coupled static model. The sodium atom is represented by the one-active-electron model in which all the electrons of the target have been considered explicitly and the loosely bound valence electron is only involved in transitions. The scattering parameters are presented at low and medium energies. Appreciable differences are noticed between the present results and those obtained by the one-electron model with and without the core potential.
Resumo:
We discuss two-dimensional Bose-Einstein Condensates (BEC) under time-periodic variation of the scattering length. In particular we argue that for high-frequency variation there exist stable self-confined condensates without an external trap, when the do component of the scattering length is negative. Our results are based on a variational approximation, on direct averaging of the Gross-Pitaevskii equation and on numerical simulations.
Resumo:
The possibility of setting constraints on the Couplings of a scalar (pseudoscalar) Higgs boson to the tau lepton and the b quark in the reactions e(+)e(-)-->v (v) over bar tau(+)tau(-) and e(+)e(-)-->v (v) over barb (b) over bar at a future linear electron-positron collider of total energy roots = 500 GeV is studied. The admixture of a new hypothetical pseudoscalar state of the Higgs boson in the Hf (f) over bar vertex is parametrized in the form (mf/v)(a+igamma(5)b). on the basis of an analysis of differential distributions for the processes under study, it is shown that data from the future linear collider TESLA will make it possible to constrain the parameters a and b as -0.32 less than or equal to Deltaa less than or equal to 0.24 and -0.73 less than or equal to b less than or equal to 0.73 in the case of the reaction e(+)e(-)-->v (v) over bar tau(+)tau(-) and as -0.026 less than or equal to Deltaa less than or equal to 0.027 and -0.23 less than or equal to b less than or equal to 0.23 in the case of the reaction e(+)e(-) --> v (v) over barb (b) over bar. It is emphasized that the contribution of the fusion Subprocess WW --> H in the channel involving an electron neutrino is of particular importance, since this contribution enhances the sensitivity of data to the parameters being analyzed. (C) 2004 MAIK Nauka/Inierperiodica.
Resumo:
We investigate the potential of TESLA and JLC/NLC electron-positron linear collider designs to observe diquarks produced resonantly in processes involving hard photons.
Resumo:
It was shown recently that in four dimensions scalar sources with fixed proper acceleration minimally coupled to a massless Klein-Gordon field lead to the same responses when they are (i) uniformly accelerated in Minkowski spacetime (in the inertial vacuum) and (ii) static in the Schwarzschild spacetime (in the Unruh vacuum). Here we show that this equivalence is broken if the spacetime dimension is more than four.
Resumo:
The scattering of photons by a static gravitational field, treated as an external field, is discussed in the context of gravity with higher derivatives. It is shown that the R-2 sector of the theory does not contribute to the photon scattering, whereas the R-mu nu(2) sector produces dispersive (energy-dependent) photon propagation.
Resumo:
lWe report on a search for second generation leptoquarks (LQ(2)) which decay into a muon plus quark in (p) over barp collisions at a center-of-mass energy of root s = 1.96 TeV in the DO detector using an integrated luminosity of about 300 pb(-1). No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction into a quark and a muon was determined for second generation scalar leptoquaiks as a function of the leptoquark mass. This result has been combined with a previously published DO search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, lambda. Assuming lambda = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m(LQ2) > 274 GeV and m(LQ2) > 226 GeV for beta = 1 and beta = 1/2, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A search for direct production of scalar bottom quarks ((b) over bar) is performed with 310 pb(-1) of data collected by the D0 experiment in p (p) over bar collisions at root s = 1.96 TeV at the Fermilab Tevatron Collider. The topology analyzed consists of two b jets and an imbalance in transverse momentum due to undetected neutralinos (chi(0)(1)), with chi(0)(1) assumed to be the lightest supersymmetric particle. We find the data consistent with standard model expectations, and set a 95% C.L. exclusion domain in the (m(b), m(chi 1)(0)) mass plane, improving significantly upon the results from run I of the Tevatron.
Resumo:
We report on a search for charge-1/3 third-generation leptoquarks (LQ) produced in p (p) over bar collisions at root s =1.96 TeV using the D0 detector at Fermilab. Third-generation leptoquarks are assumed to be produced in pairs and to decay to a tau neutrino and a b quark with branching fraction B. We place upper limits on sigma(p (p) over bar -> LQ (LQ) over bar )B-2 as a function of the leptoquark mass M-LQ. Assuming B=1, we exclude at the 95% confidence level third-generation scalar leptoquarks with M-LQ < 229 GeV.
Resumo:
We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length.The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibility of stabilization of the unstable pi-mode regime. (C) 2000 Published by Elsevier B.V. B.V. PACS: 03.75.Fi; 05.30.Jp.