937 resultados para ricostruzione immagini regolarizzazione in norma L1 metodo di tipo Newton formule L-BFGS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition of the leaf oils from seven populations of J. sabina L., one population of Juniperus sabina var. arenaria (E. H. Wilson) Farjon were examined for their geographic variation. In addition, the leaf oils of J. chinensis L. and J. davurica Pall. were compared to J. sabina. Juniperus sabina var. arenarla, the sand loving juniper, oil was found to be very similar to that of J. davurica, Mongolia, and J. sabina, on sand dunes in Mongolia. This suggests that J. sabina var. arenaria might be conspecific with J. davurica. Farjon's move (2001) of J. sabina var. arenaria out of J. chinensis is supported. Considerable differentiation was found in populations of J. sabina from the Iberian peninsula. Cedrol, citronellol, safrole, trans-sabinyl acetate, terpinen-4-ol and beta-thujone were found to be polymorphic in several populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D(2) dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3β and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic variation existing in a set of barley (Hordeum vulgare L.) landrace samples recently collected in Morocco was estimated. Two kinds of genetic markers, seed storage proteins (hordeins) and random amplified polymorphic DNA (RAPD), were used. Only six out of 31 landraces were subjected to RAPD analysis. Both kinds of markers, RAPD and storage proteins, yielded similar results, showing that the level of variation observed in Moroccan barley was high: all landraces showed variability; 808 different storage protein patterns (multilocus associations) were observed among 1897 individuals (2.32 seeds per association, on average) with an average of 43 multilocus associations per accession. In general, genetic variation within accessions was higher than between accessions. The 100 polymorphic RAPD bands generated by 21 effective primers were able to generate enough patterns to differentiate between uniform cultivars and even between individuals in variable accessions. One of the aims of this work was to compare the effectiveness of RAPD versus storage protein techniques in assessing the variability of genetic resource collections. On average hordeins were more polymorphic than RAPDs: they showed more alternatives per band on gels and a higher percentage of polymorphic bands, although RAPDs supply a higher number of bands. Although RAPD is an easy and standard technique, storage protein analysis is technically easier, cheaper and needs less sophisticated equipment. Thus, when resources are a limiting factor and considering the cost of consumables and work time, seed storage proteins must be the technique of choice for a first estimation of genetic variation in plant genetic resource collections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were conducted to investigate the interactions between an earthworm species (Lumbricus terrestrius) and soil microflora with respect to the bioavailability and mineralisation of 14C ring-labelled atrazine. Presence of earthworms had no affect on atrazine in soil solution (assayed by soil centrifugation). This soil solution pool was highly time dependent, decreasing considerably as the experiment proceeded. KCl-extractable label was, however, affected by the presence of earthworms, with this pool initially increasing in the presence of the worms. This pool was also highly time-dependent although, the pattern of this dependence did not follow that for label in soil solution. Mineralisation of the atrazine closely followed the KCl exchangeable pool and not that of the soil solution pool. However, label sorbed to the surface of the worms was closely correlated to the soil solution pool. Mineralisation in the presence of earthworms was double that of the controls. By the end of the experiment 6% of added radioactivity was present in the earthworm biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as a-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that itleads to an extensivea-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-L-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collectionneur : Lesouëf, Auguste (1829-1906)