962 resultados para redox-active disulfide
Resumo:
The influence of the membrane active peptides, Tat44–57 (activator in HIV-1) and melittin (active content of bee venom), on self-assembled monolayers of 6-mercaptohexanoic acid (MHA) on gold electrodes has been studied with scanning electrochemical microscopy (SECM). It was found that MHA, when deprotonated at physiological pH, significantly affected the relative rates of electron transfer between the [Fe(CN)6]4− solution based mediator and the underlying gold electrode, predominantly by the electrostatic interaction between the mediator and MHA. Upon the introduction of Tat44–57 ormelittin to the electrolyte, the relative rate of electron transfer through the MHA layer could be increased or decreased depending on the mediator used. However, in all cases it was found that these peptides have the ability to be incorporated into synthetic SAMs, which has implications for future electrochemical studies carried out using cell mimicking membranes immobilised on such layers.
Resumo:
Background Australian subacute inpatient rehabilitation facilities face significant challenges from the ageing population and the increasing burden of chronic disease. Foot disease complications are a negative consequence of many chronic diseases. With the rapid expansion of subacute rehabilitation inpatient services, it seems imperative to investigate the prevalence of foot disease and foot disease risk factors in this population. The primary aim of this cross-sectional study was to determine the prevalence of active foot disease and foot disease risk factors in a subacute inpatient rehabilitation facility. Methods Eligible participants were all adults admitted at least overnight into a large Australian subacute inpatient rehabilitation facility over two different four week periods. Consenting participants underwent a short non-invasive foot examination by a podiatrist utilising the validated Queensland Health High Risk Foot Form to collect data on age, sex, medical co-morbidity history, foot disease risk factor history and clinically diagnosed foot disease complications and foot disease risk factors. Descriptive statistics were used to determine the prevalence of clinically diagnosed foot disease complications, foot disease risk factors and groups of foot disease risk factors. Logistic regression analyses were used to investigate any associations between defined explanatory variables and appropriate foot disease outcome variables. Results Overall, 85 (88%) of 97 people admitted to the facility during the study periods consented; mean age 80 (±9) years and 71% were female. The prevalence (95% confidence interval) of participants with active foot disease was 11.8% (6.3 – 20.5), 32.9% (23.9 – 43.5) had multiple foot disease risk factors, and overall, 56.5% (45.9 – 66.5) had at least one foot disease risk factor. A self-reported history of peripheral neuropathy diagnosis was independently associated with having multiple foot disease risk factors (OR 13.504, p = 0.001). Conclusion This study highlights the potential significance of the burden of foot disease in subacute inpatient rehabilitation facilities. One in eight subacute inpatients were admitted with active foot disease and one in two with at least one foot disease risk factor in this study. It is recommended that further multi-site studies and management guidelines are required to address the foot disease burden in subacute inpatient rehabilitation facilities. Keywords: Subacute; Inpatient; Foot; Complication; Prevalence
Resumo:
This paper proposes a linear large signal state-space model for a phase controlled CLC (Capacitor Inductor Capacitor) Resonant Dual Active Bridge (RDAB). The proposed model is useful for fast simulation and for the estimation of state variables under large signal variation. The model is also useful for control design because the slow changing dynamics of the dq variables are relatively easy to control. Simulation results of the proposed model are presented and compared to the simulated circuit model to demonstrate the proposed model's accuracy. This proposed model was used for the design of a Proportional-Integral (PI) controller and it has been implemented in the circuit simulation to show the proposed models usefulness in control design.
Resumo:
The synthesis, electronic absorption and 1H NMR spectra of a suite of novel porphyrinoids derived from meso-bromoporphyrins by palladium-catalysed aminations using ethyl and tert-butylcarbazates are reported. Instead of the expected carbazate-substituted porphyrins, a facile oxidative dearomatisation of the porphyrin ring occurs in high yield, especially for the nickel(II) complexes, resulting in high yields of 5,15-diiminoporphodimethenes (DIPDs). The analogous zinc(II) and free base DIPDs were also characterised, the former by X-ray crystallography. The oxidation and reduction reactions of DIPDs and their precursor carbazate porphyrins were studied. Density Functional Theory (DFT) was used to calculate the optimised geometries and frontier molecular orbitals of DIPD Ni8c and bis(azocarboxylate) 19c, and Time Dependent DFT calculations allowed the prediction of electronic absorption spectra, whose characteristics corresponded well with those of the observed solution spectra. In the latter case, the calculated low-energy absorptions were unlike those of a typical porphyrin, due to the near-degeneracy of the highest filled frontier orbitals, and the wide energy separation between the unfilled orbitals. This feature was present in the observed spectrum.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Resumo:
We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Over 800 cities globally now offer bikeshare programs. One of their purported benefits is increased physical activity. Implicit in this claim is that bikeshare replaces sedentary modes of transport, particularly car use. This paper estimates the median changes in physical activity levels as a result of bikeshare in the cities of Melbourne, Brisbane, Washington, D.C., London, and Minneapolis/St. Paul. This study is the first known multi-city evaluation of the active travel impacts of bikeshare programs. To perform the analysis, data on mode substitution (i.e. the modes that bikeshare replaces) were used to determine the extent of shift from sedentary to active transport modes (e.g. when a car trip is replaced by bikeshare). Potentially offsetting these gains, reductions in physical activity when walking trips are replaced by bikeshare was also estimated. Finally a Markov Chain Monte Carlo analysis was conducted to estimate confidence bounds on estimated impacts on active travel given uncertainties in data sources. The results indicate that on average 60% of bikeshare trips replace sedentary modes of transport (from 42% in Minneapolis/St. Paul to 67% in Brisbane). When bikeshare replaces a walking trip, there is a reduction in active travel time because walking a given distance takes longer than cycling. Considering the active travel balance sheet for the cities included in this analysis, bikeshare activity in 2012 has an overall positive impact on active travel time. This impact ranges from an additional 1.4 million minutes of active travel for the Minneapolis/St. Paul bikeshare program, to just over 74 million minutes of active travel for the London program The analytical approach adopted to estimate bikeshare’s impact on active travel may act as the basis for future bikeshare evaluations or feasibility studies.
Resumo:
We examined whether self-ratings of “being active” among older people living in four different settings (major city high and lower density suburbs, a regional city, and a rural area) were associated with out-of-home participation and outdoor physical activity. A mixed-methods approach (survey, travel diary, and GPS tracking over a one-week period) was used to gather data from 48 individuals aged over 55 years. Self-ratings of “being active” were found to be positively correlated with the number of days older people spent time away from home but unrelated to time traveled by active means (walking and biking). No significant differences in active travel were found between the four study locations, despite differences in their respective built environments.The findings suggest that additional strategies to the creation of “age-friendly” environments are needed if older people are to increase their levels of outdoor physical activity. “Active aging” promotion campaigns may need to explicitly identify the benefits of walking outdoors to ambulatory older people as a means of maintaining their overall health, functional ability, and participation within society in the long-term and also encourage the development of community-based programs in order to facilitate regular walking for this group.
Resumo:
The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 to 0.27 eV when 4e– are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T′ phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T′-MoS2 structure shows comparable hydrogen evolution reaction activity to the 2H-MoS2 structure. If the charge transfer kinetics is taken into account, the catalytic activity of 1T′-MoS2 is superior to that of 2H-MoS2. Our finding provides a possible novel method for phase transition of MoS2 and enriches understanding of the catalytic properties of MoS2 for HER.
Resumo:
This paper reports on the findings of qualitative, semi-structured interviews conducted with 40 older Australian participants who either did or did not engage in organized learning. Phenomenology was used to guide the interviews and analysis to explore the lived learning experiences and perspectives of these older people. Their experiences of learning can be described in two main categories of pleasure and leisure or purpose and relevance. Almost all the activities described in these categories have the potential to support health and wellbeing. Organisers of activities should take these reasons into account.
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.