988 resultados para recognition interaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosoma mansoni cercariae were inoculated into the peritoneal cavity of naive mice and recovered 30 minutes later. Ultrastructural studies showed that neutrophils adhere to the larval surface and participate in the removal of glycocalyx by phagocytosis. This finding suggests that the neutrophils can play a role on the cercaria-schistosomulum transformation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway vehicle homologation, with respect to running dynamics, is addressed via dedicated norms. The results required, such as, accelerations and/or wheel-rail contact forces, obtained from experimental tests or simulations, must be available. Multibody dynamics allows the modelling of railway vehicles and their representation in real operations conditions, being the realism of the multibody models greatly influenced by the modelling assumptions. In this paper, two alternative multibody models of the Light Rail Vehicle 2000 (LRV) are constructed and simulated in a realistic railway track scenarios. The vehicle-track interaction compatibility analysis consists of two stages: the use of the simplified method described in the norm "UIC 518-Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behaviour-Safety-Track Fatigue-Running Behaviour" for decision making; and, visualization inspection of the vehicle motion with respect to the track via dedicated tools for understanding the mechanisms involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric recognition is emerging has an alternative solution for applications where the privacy of the information is crucial. This paper presents an embedded biometric recognition system based on the Electrocardiographic signals (ECG) for individual identification and authentication. The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain. The system is based on a ARM Cortex 4. Preliminary results show that embedded platforms are a promising path for the implementation of ECG-based applications in real-world scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometric recognition has recently emerged as part of applications where the privacy of the information is crucial, as in the health care field. This paper presents a biometric recognition system based on the Electrocardiographic signal (ECG). The proposed system is based on a state-of-the-art recognition method which extracts information from the frequency domain. In this paper we propose a new method to increase the spectral resolution of low bandwidth ECG signals due to the limited bandwidth of the acquisition sensor. Preliminary results show that the proposed scheme reveals a higher identification rate and lower equal error rate when compared to previous approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A interação humano-computador passou a desempenhar um papel fundamental no mundo atual. Esta forma de comunicar continua a evoluir, introduzindo novas formas de interação, como por exemplo, a interação natural. Este estilo de interação começou por estar presente na área de jogos. No entanto, atualmente está a ser explorada noutras áreas. Esta dissertação tem como propósito investigar a utilidade das interfaces naturais encontradas em consolas de jogos e conjugar com a área educativa, nomeadamente, o ensino e a aprendizagem dos fundamentos de Matemática. O desenvolvimento deste projeto baseou-se no estudo dos conteúdos programáticos de Matemática referentes ao 1º ciclo do ensino básico, de várias aplicações já existentes que estão relacionadas com o tema abordado e de alguns dispositivos de interação natural. De forma a avaliar a ideia proposta, foi desenvolvido um protótipo, designado Matemática Interativa, no sentido de permitir ao utilizador enriquecer a aprendizagem e também o interesse pela disciplina. São descritas, de uma forma mais aprofundada, as funcionalidades do dispositivo escolhido, o Kinect, de modo a tirar proveito das suas potencialidades e desenvolver um motor de reconhecimento de gestos e respetiva avaliação. Por fim, é feita uma discussão dos resultados de uma avaliação de usabilidade com o objetivo de validar a aplicação Matemática Interativa. Os resultados desta avaliação sugerem que a aplicação foi bem-sucedida e revelam ainda capacidades de melhoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No panorama socioeconómico atual, a contenção de despesas e o corte no financiamento de serviços secundários consumidores de recursos conduzem à reformulação de processos e métodos das instituições públicas, que procuram manter a qualidade de vida dos seus cidadãos através de programas que se mostrem mais eficientes e económicos. O crescimento sustentado das tecnologias móveis, em conjunção com o aparecimento de novos paradigmas de interação pessoa-máquina com recurso a sensores e sistemas conscientes do contexto, criaram oportunidades de negócio na área do desenvolvimento de aplicações com vertente cívica para indivíduos e empresas, sensibilizando-os para a disponibilização de serviços orientados ao cidadão. Estas oportunidades de negócio incitaram a equipa do projeto a desenvolver uma plataforma de notificação de problemas urbanos baseada no seu sistema de informação geográfico para entidades municipais. O objetivo principal desta investigação foca a idealização, conceção e implementação de uma solução completa de notificação de problemas urbanos de caráter não urgente, distinta da concorrência pela facilidade com que os cidadãos são capazes de reportar situações que condicionam o seu dia-a-dia. Para alcançar esta distinção da restante oferta, foram realizados diversos estudos para determinar características inovadoras a implementar, assim como todas as funcionalidades base expectáveis neste tipo de sistemas. Esses estudos determinaram a implementação de técnicas de demarcação manual das zonas problemáticas e reconhecimento automático do tipo de problema reportado nas imagens, ambas desenvolvidas no âmbito deste projeto. Para a correta implementação dos módulos de demarcação e reconhecimento de imagem, foram feitos levantamentos do estado da arte destas áreas, fundamentando a escolha de métodos e tecnologias a integrar no projeto. Neste contexto, serão apresentadas em detalhe as várias fases que constituíram o processo de desenvolvimento da plataforma, desde a fase de estudo e comparação de ferramentas, metodologias, e técnicas para cada um dos conceitos abordados, passando pela proposta de um modelo de resolução, até à descrição pormenorizada dos algoritmos implementados. Por último, é realizada uma avaliação de desempenho ao par algoritmo/classificador desenvolvido, através da definição de métricas que estimam o sucesso ou insucesso do classificador de objetos. A avaliação é feita com base num conjunto de imagens de teste, recolhidas manualmente em plataformas públicas de notificação de problemas, confrontando os resultados obtidos pelo algoritmo com os resultados esperados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em BioOrgânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer Science

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an optical sensor based on localized surface plasmon resonance (LSPR) to study small-molecule protein interaction combining high sensitivity refractive index sensing for quantitative binding information and subsequent conformation-sensitive plasmon-activated circular dichroism spectroscopy. The interaction of α-amylase and a small-size molecule (PGG, pentagalloyl glucose) was log concentration-dependent from 0.5 to 154 μM. In situ tests were additionally successfully applied to the analysis of real wine samples. These studies demonstrate that LSPR sensors to monitor small molecule–protein interactions in real time and in situ, which is a great advance within technological platforms for drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astringency is an organoleptic property of beverages and food products resulting mainly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers, but the only effective way of measuring it involves trained sensorial panellists, providing subjective and expensive responses. Concurrent chemical evaluations try to screen food astringency, by means of polyphenol and protein precipitation procedures, but these are far from the real human astringency sensation where not all polyphenol–protein interactions lead to the occurrence of precipitate. Here, a novel chemical approach that tries to mimic protein–polyphenol interactions in the mouth is presented to evaluate astringency. A protein, acting as a salivary protein, is attached to a solid support to which the polyphenol binds (just as happens when drinking wine), with subsequent colour alteration that is fully independent from the occurrence of precipitate. Employing this simple concept, Bovine Serum Albumin (BSA) was selected as the model salivary protein and used to cover the surface of silica beads. Tannic Acid (TA), employed as the model polyphenol, was allowed to interact with the BSA on the silica support and its adsorption to the protein was detected by reaction with Fe(III) and subsequent colour development. Quantitative data of TA in the samples were extracted by colorimetric or reflectance studies over the solid materials. The analysis was done by taking a regular picture with a digital camera, opening the image file in common software and extracting the colour coordinates from HSL (Hue, Saturation, Lightness) and RGB (Red, Green, Blue) colour model systems; linear ranges were observed from 10.6 to 106.0 μmol L−1. The latter was based on the Kubelka–Munk response, showing a linear gain with concentrations from 0.3 to 10.5 μmol L−1. In either of these two approaches, semi-quantitative estimation of TA was enabled by direct eye comparison. The correlation between the levels of adsorbed TA and the astringency of beverages was tested by using the assay to check the astringency of wines and comparing these to the response of sensorial panellists. Results of the two methods correlated well. The proposed sensor has significant potential as a robust tool for the quantitative/semi-quantitative evaluation of astringency in wine.