998 resultados para reading speed
Resumo:
This article deals with a contour error controller (CEC) applied in a high speed biaxial table. It works simultaneously with the table axes controllers, helping them. In the early stages of the investigation, it was observed that its main problem is imprecision when tracking non-linear contours at high speeds. The objectives of this work are to show that this problem is caused by the lack of exactness of the contour error mathematical model and to propose modifications in it. An additional term is included, resulting in a more accurate value of the contour error, enabling the use of this type of motion controller at higher feedrate. The response results from simulated and experimental tests are compared with those of common PID and non-corrected CEC in order to analyse the effectiveness of this controller over the system. The main conclusions are that the proposed contour error mathematical model is simple, accurate, almost insensible to the feedrate and that a 20:1 reduction of the integral absolute contour error is possible.
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
Visual object tracking has been one of the most popular research topics in the field of computer vision recently. Specifically, hand tracking has attracted significant attention since it would enable many useful practical applications. However, hand tracking is still a very challenging problem which cannot be considered solved. The fact that almost every aspect of hand appearance can change is the fundamental reason for this difficulty. This thesis focused on 2D-based hand tracking in high-speed camera videos. During the project, a toolbox for this purpose was collected which contains nine different tracking methods. In the experiments, these methods were tested and compared against each other with both high-speed videos recorded during the project and publicly available normal speed videos. The results revealed that tracking accuracies varied considerably depending on the video and the method. Therefore, no single method was clearly the best in all videos, but three methods, CT, HT, and TLD, performed better than the others overall. Moreover, the results provide insights about the suitability of each method to different types and situations of hand tracking.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Teiden liukkauden mittaaminen on herättänyt kiinnostusta viime vuosina. Liikenneturvallisuutta pystyttäisiin parantamaan ja teiden talvikunnossapitoa tehostamaan, mikäli kitkakerroin voitaisiin mitata tiestöä käyttävissä ajoneuvoissa. Tässä työssä suunnitellaan ja toteutetaan ajoneuvon pituussuuntaiseen dynamiikkaan perustuva kitkakertoimen mittausjärjestelmä. Pyörien luisto ja ajoneuvon nopeus, sekä pyöriin ja ajoneuvoon kohdistuvat voimat selvitetään CAN – väylästä luettavien ajoneuvon antureiden ja IMU:n avulla. Järjestelmää simuloidaan käyttämällä Matlab:ia ja testataan käytännössä VW Transporter pakettiautossa. Testitulokset osoittavat järjestelmän toimivan tarkasti ja että ajoneuvon dynamiikkaan perustuvan kitkakertoimen mittauksen on käyttökelpoinen ja kustannustehokas tapa teiden liukkauden valvomiseen.
Resumo:
Reading the human Y chromosome: the emerging DNA markers and human genetic history.
Resumo:
Speed, uncertainty and complexity are increasing in the business world all the time. When knowledge and skills become quickly irrelevant, new challenges are set for information technology (IT) education. Meta-learning skills – learning how to learn rapidly - and innovation skills have become more essential than single technologies or other specific issues. The drastic changes in the information and communications technology (ICT) sector have caused a need to reconsider how IT Bachelor education in Universities of Applied Sciences should be organized and employed to cope with the change. The objective of the study was to evaluate how a new approach to IT Bachelor education, the ICT entrepreneurship study path (ICT-ESP) fits IT Bachelor education in a Finnish University of Applied Sciences. This kind of educational arrangement has not been employed elsewhere in the context of IT Bachelor education. The study presents the results of a four-year period during which IT Bachelor education was renewed in a Finnish University of Applied Sciences. The learning environment was organized into an ICT-ESP based on Nonaka’s knowledge theory and Kolb’s experiental learning. The IT students who studied in the ICT-ESP established a cooperative and learned ICT by running their cooperative at the University of Applied Sciences. The students (called team entrepreneurs) studied by reading theory in books and other sources of explicit information, doing projects for their customers, and reflecting in training sessions on what was learnt by doing and by studying the literature. Action research was used as the research strategy in this study. Empirical data was collected via theme-based interviews, direct observation, and participative observation. Grounded theory method was utilized in the data analysis and the theoretical sampling was used to guide the data collection. The context of the University of Applied Sciences provided a good basis for fostering team entrepreneurship. However, the results showed that the employment of the ICT-ESP did not fit into the IT Bachelor education well enough. The ICT-ESP was cognitively too tough for the team entrepreneurs because they had two different set of rules to follow in their studies. The conventional courses engaged lot of energy which should have been spent for professional development in the ICT-ESP. The amount of competencies needed in the ICT-ESP for professional development was greater than those needed for any other ways of studying. The team entrepreneurs needed to develop skills in ICT, leadership and self-leadership, team development and entrepreneurship skills. The entrepreneurship skills included skills on marketing and sales, brand development, productization, and business administration. Considering the three-year time the team entrepreneurs spent in the ICT-ESP, the challenges were remarkable. Changes to the organization of IT Bachelor education are also suggested in the study. At first, it should be admitted that the ICT-ESP produces IT Bachelors with a different set of competencies compared to the conventional way of educating IT Bachelors. Secondly, the number of courses on general topics in mathematics, physics, and languages for team entrepreneurs studying in the ICTESP should be reconsidered and the conventional course-based teaching of the topics should be reorganized to support the team coaching process of the team entrepreneurs with their practiceoriented projects. Third, the upcoming team entrepreneurs should be equipped with relevant information about the ICT-ESP and what it would require in practice to study as a team entrepreneur. Finally, the upcoming team entrepreneurs should be carefully selected before they start in the ICT-ESP to have a possibility to eliminate solo players and those who have a too romantic view of being a team entrepreneur. The results gained in the study provided answers to the original research questions and the objectives of the study were met. Even though the IT degree programme was terminated during the research process, the amount of qualitative data gathered made it possible to justify the interpretations done.
Resumo:
According to the concepts of cognitive neuropsychology, there are two principal routes of reading processing: a lexical route, in which global reading of words occurs and a phonological route, responsible for the conversion of the graphemes into their respective phonemes. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the patterns of cerebral activation in lexical and phonological reading by 13 healthy women with a formal educational level greater than 11 years. Participants were submitted to a silent reading task containing three types of stimuli: real words (irregular and foreign words), nonwords and illegitimate graphic stimuli. An increased number of activated voxels were identified by fMRI in the word reading (lexical processing) than in the nonword reading (phonological processing) task. In word reading, activation was greater than for nonwords in the following areas: superior, middle and inferior frontal gyri, and bilateral superior temporal gyrus, right cerebellum and the left precentral gyrus, as indicated by fMRI. In the reading of nonwords, the activation was predominant in the right cerebellum and in the left superior temporal gyrus. The results of the present study suggest the existence of differences in the patterns of cerebral activation during lexical and phonological reading, with greater involvement of the right hemisphere in reading words than nonwords.
Resumo:
We have investigated Russian children’s reading acquisition during an intermediate period in their development: after literacy onset, but before they have acquired well-developed decoding skills. The results of our study suggest that Russian first graders rely primarily on phonemes and syllables as reading grain-size units. Phonemic awareness seems to have reached the metalinguistic level more rapidly than syllabic awareness after the onset of reading instruction, the reversal which is typical for the initial stages of formal reading instruction creating external demand for phonemic awareness. Another reason might be the inherent instability of syllabic boundaries in Russian. We have shown that body-coda is a more natural representation of subsyllabic structure in Russian than onset-rime. We also found that Russian children displayed variability of syllable onset and offset decisions which can be attributed to the lack of congruence between syllabic and morphemic word division in Russian. We suggest that fuzziness of syllable boundary decisions is a sign of the transitional nature of this stage in the reading development and it indicates progress towards an awareness of morphologically determined closed syllables. Our study also showed that orthographic complexity exerts an influence on reading in Russian from the very start of reading acquisition. Besides, we found that Russian first graders experience fluency difficulties in reading orthographically simple words and nonwords of two and more syllables. The transition from monosyllabic to bisyllabic lexical items constitutes a certain threshold, for which the syllabic structure seemed to be of no difference. When we compared the outcomes of the Russian children with the ones produced by speakers of other languages, we discovered that in the tasks which could be performed with the help of alphabetic recoding Russian children’s accuracy was comparable to that of children learning to read in relatively shallow orthographies. In tasks where this approach works only partially, Russian children demonstrated accuracy results similar to those in deeper orthographies. This pattern of moderate results in accuracy and excellent performance in terms of reaction times is an indication that children apply phonological recoding as their dominant strategy to various reading tasks and are only beginning to develop suitable multiple strategies in dealing with orthographically complex material. The development of these strategies is not completed during Grade 1 and the shift towards diversification of strategies apparently continues in Grade 2.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
Resumo:
Giorgio Agamben and Ludwig Wittgenstein seem to have very little in common: the former is concerned with traditional ontological issues while the latter was interested in logics and ordinary language, avoiding metaphysical issues as something we cannot speak about. However, both share a crucial notion for their philosophical projects: form of life. In this paper, I try to show that, despite their different approaches and goals, form of life is for both a crucial notion for thinking ethics and life in-common. Addressing human existence in its constitutive relation to language, this notion deconstructs traditional dichotomies like bios and zoé, the cultural and the biological, enabling both authors to think of a life which cannot be separated from its forms, recognizing the commonality of logos as the specific trait of human existence. Through an analogical reading between both theoretical frameworks, I suggest that the notion of form-of-life, elaborated by Wittgenstein to address human production of meaning, becomes the key notion in Agamben's affirmative thinking since it enables us to consider the common ontologically in its relation to Human potentialities and to foresee a new, common use of the world and ourselves.
Resumo:
Currently, laser scribing is growing material processing method in the industry. Benefits of laser scribing technology are studied for example for improving an efficiency of solar cells. Due high-quality requirement of the fast scribing process, it is important to monitor the process in real time for detecting possible defects during the process. However, there is a lack of studies of laser scribing real time monitoring. Commonly used monitoring methods developed for other laser processes such a laser welding, are sufficient slow and existed applications cannot be implemented in fast laser scribing monitoring. The aim of this thesis is to find a method for laser scribing monitoring with a high-speed camera and evaluate reliability and performance of the developed monitoring system with experiments. The laser used in experiments is an IPG ytterbium pulsed fiber laser with 20 W maximum average power and Scan head optics used in the laser is Scanlab’s Hurryscan 14 II with an f100 tele-centric lens. The camera was connected to laser scanner using camera adapter to follow the laser process. A powerful fully programmable industrial computer was chosen for executing image processing and analysis. Algorithms for defect analysis, which are based on particle analysis, were developed using LabVIEW system design software. The performance of the algorithms was analyzed by analyzing a non-moving image from the scribing line with resolution 960x20 pixel. As a result, the maximum analysis speed was 560 frames per second. Reliability of the algorithm was evaluated by imaging scribing path with a variable number of defects 2000 mm/s when the laser was turned off and image analysis speed was 430 frames per second. The experiment was successful and as a result, the algorithms detected all defects from the scribing path. The final monitoring experiment was performed during a laser process. However, it was challenging to get active laser illumination work with the laser scanner due physical dimensions of the laser lens and the scanner. For reliable error detection, the illumination system is needed to be replaced.
Resumo:
Fluid handling systems account for a significant share of the global consumption of electrical energy. They also suffer from problems, which reduce their energy efficiency and increase life-cycle costs. Detecting or predicting these problems in time can make fluid handling systems more environmentally and economically sustainable to operate. In this Master’s Thesis, significant problems in fluid systems were studied and possibilities to develop variable-speed-drive-based detection methods for them was discussed. A literature review was conducted to find significant problems occurring in fluid handling systems containing pumps, fans and compressors. To find case examples for evaluating the feasibility of variable-speed-drive-based methods, queries were sent to industrial companies. As a result of this, the possibility to detect heat exchanger fouling with a variable-speed drive was analysed with data from three industrial cases. It was found that a mass flow rate estimate, which can be generated with a variable speed drive, can be used together with temperature measurements to monitor a heat exchanger’s thermal performance. Secondly, it was found that the fouling-related increase in the pressure drop of a heat exchanger can be monitored with a variable speed drive. Lastly, for systems where the flow device is speed controlled with by a pressure measurement, it was concluded that increasing rotational speed can be interpreted as progressing fouling in the heat exchanger.
Resumo:
The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.