944 resultados para radio continuum : stars
Resumo:
High- resolution UVES/ VLT spectra of B 12, an extreme pole- on Be star in the SMC cluster NGC 330, have been analysed using non-LTE model atmospheres to obtain its chemical composition relative to the SMC standard star AV304. We find a general underabundance of metals which can be understood in terms of an extra contribution to the stellar continuum due to emission from a disk which we estimate to be at the similar to 25% level. When this is corrected for, the nitrogen abundance for B12 shows no evidence of enhancement by rotational mixing as has been found in other non-Be B-type stars in NGC 330, and is inconsistent with evolutionary models which include the effects of rotational mixing. A second Be star, NGC330-B 17, is also shown to have no detectable nitrogen lines. Possible explanations for the lack of rotational mixing in these rapidly rotating stars are discussed, one promising solution being the possibility that magnetic fields might inhibit rotational mixing.
Resumo:
Previous Call K observations of the B-type star HD 83206 have revealed putative high-velocity interstellar clouds (HVCs) at Local Standard of Rest (LSR) velocities of -80 and -110 km s(- 1). Similar results were also found for the sightline towards HD135485. In this article, we show that these absorption lines are in fact due tr, stellar SII features. As the Call K absorption line in B-type stars is often used to assess the presence and distance of HVCs. we also present a very high quality spectrum of HD 83206 in the Ca II K region (similar to+/-4 Angstrom or +/-300 km s(-1)), so that in the future confusion between stellar lines and HVC features may be avoided.
Resumo:
High-resolution (R approximate to 40 000) echelle spectroscopic observations of 13 high-latitude early-type stars are presented. These stars comprise the final part of a complete magnitude range limited sample based on low-resolution spectroscopy of targets drawn from the Palomar-Green survey. The magnitude range under consideration is 13 less than or equal to B-PG less than or equal to 14.6, corresponding to an approximate distance limit for main-sequence B-type objects of 5 less than or equal to d less than or equal to 40 kpc. Three stars are found to be apparently normal, young stars, based on their positions on the (T-eff, log g) diagram, normal abundance patterns and relatively large projected rotational velocities. A further star, PG 1209+263, was found to belong to the chemically peculiar (CP) silicon star class of objects. The remainder are evolved subluminous stars lying on post- horizontal branch (post-HB) tracks, with the exception of PG 2120+062, which appears to be in a post-asymptotic giant branch evolutionary stage. For the young stars in the sample, we have derived distance and age estimates through comparison of the atmospheric parameters with recent theoretical evolutionary models. We discuss formation scenarios by comparing times-of- flight and evolutionary time-scales. It is found that all stars could have formed in the Galactic disc and been ejected from there soon after their birth, with the exception of PG 1209+263. The adopted proper motion is found to be a crucial factor in the kinematical analysis. We also present some number densities for young B-type halo stars, which indicate that they are extremely scarce objects.
Resumo:
We present high-resolution spectroscopic observations of 21 B- type stars, selected from the Edinburgh-Cape Blue Object Survey. Model atmosphere analyses confirm that 14 of these stars are young, main-sequence B-type objects with Population I chemical compositions. The remaining seven are found to be evolved objects, including subdwarfs, horizontal branch and post-AGB objects. A kinematical analysis shows that all 14 young main-sequence stars could have formed in the disc and subsequently been ejected into the halo. These results are combined with the analysis of a previous subsample of stars taken from the Survey. Of the complete sample, 31 have been found to be young, main-sequence objects, with formation in the disc, and subsequent ejection into the halo, again being found to be a plausible scenario.
Resumo:
19 B-type stars, selected from the Palomar-Green Survey, have been observed at infrared wavelengths to search for possible infrared excesses, as part of an ongoing programme to investigate the nature of early-type stars at high Galactic latitudes. The resulting infrared fluxes, along with Stromgren photometry, are compared with theoretical flux profiles to determine whether any of the targets show evidence of circumstellar material, which may be indicative of post-main- sequence evolution. Eighteen of the targets have flux distributions in good agreement with theoretical predictions. However, one star, PG 2120 + 062, shows a small near-infrared excess, which may be due either to a cool companion of spectral type F5-F7, or to circumstellar material, indicating that it may be an evolved object such as a post-asymptotic giant branch star, in the transition region between the asymptotic giant branch and planetary nebula phase, with the infrared excess due to recent mass loss during giant branch evolution.
Resumo:
We present model atmosphere analyses of high resolution Keck and VLT optical spectra for three evolved stars in globular clusters, viz. ZNG-1 in M 10, ZNG-1 in M 15 and ZNG-1 in NGC 6712. The derived atmospheric parameters and chemical compositions confirm the programme stars to be in the post- Asymptotic Giant Branch (post-AGB) evolutionary phase. Differential abundance analyses reveal CNO abundance patterns in M 10 ZNG-1, and possibly M 15 ZNG-1, which Suggest that both objects may have evolved off the AGB before the third dredge-up occurred. The abundance pattern of these stars is similar to the third class of optically, bright post-AGB objects discussed by van Winckel (1997). Furthermore, M 10 ZNG-1 exhibits a large C underabundance (with Delta[C/O] similar to -1.6 dex), typical of other hot post-AGB objects. Differential Delta[alpha/Fe] abundance ratios in both M 10 ZNG-1 and NGC 6712 ZNG-1 are found to be approximately 0.0 dex, with the Fe abundance of the former being in disagreement with the cluster metallicity of M 10. Given that the Fe absorption features in both M 10 ZNG-1 and NGC6712 ZNG-1 are well observed and reliably modelled, we believe that these differential Fe abundance estimates to be secure. However, our Fe abundance is difficult to explain in terms of previous evolutionary processes that Occur oil both the Horizontal Branch and the AGB.
Resumo:
We present Westerbork Synthesis Radio Telescope HI images, Lovell telescope multibeam H I wide-field mapping, William Herschel Telescope long-slit echelle Ca II observations, Wisconsin Halpha Mapper (WHAM) facility images, and IRAS ISSA 60- and 100-mum co-added images towards the intermediate- velocity cloud (IVC) at + 70 km s(-1), located in the general direction of the M15 globular cluster. When combined with previously published Arecibo data, the H I gas in the IVC is found to be clumpy, with a peak H I column density of similar to1.5 x 10(20) cm(-2), inferred volume density (assuming spherical symmetry) of similar to24 cm(-3)/D (kpc) and a maximum brightness temperature at a resolution of 81 x 14 arcsec(2) of 14 K. The major axis of this part of the IVC lies approximately parallel to the Galactic plane, as does the low- velocity H I gas and IRAS emission. The H I gas in the cloud is warm, with a minimum value of the full width at half-maximum velocity width of 5 km s(-1) corresponding to a kinetic temperature, in the absence of turbulence, of similar to540 K. From the H I data, there are indications of two-component velocity structure. Similarly, the Ca II spectra, of resolution 7 km s(-1), also show tentative evidence of velocity structure, perhaps indicative of cloudlets. Assuming that there are no unresolved narrow-velocity components, the mean values of log(10)[N(Ca II K) cm(2)] similar to 12.0 and Ca II/H I similar to2 5 x 10(-8) are typical of observations of high Galactic latitude clouds. This compares with a value of Ca II/H I>10(-6) for IVC absorption towards HD 203664, a halo star of distance 3 kpc, some 3.degrees1 from the main M15 IVC condensation. The main IVC condensation is detected by WHAM in Halpha with central local-standard-of-rest velocities of similar to60-70 km s(-1), and intensities uncorrected for Galactic extinction of up to 1.3 R, indicating that the gas is partially ionized. The FWHM values of the Halpha IVC component, at a resolution of 1degrees, exceed 30 km s(-1). This is some 10 km s(-1) larger than the corresponding H I value at a similar resolution, and indicates that the two components may not be mixed. However, the spatial and velocity coincidence of the Halpha and H I peaks in emission towards the main IVC component is qualitatively good. If the Halpha emission is caused solely by photoionization, the Lyman continuum flux towards the main IVC condensation is similar to2.7 x 10(6) photon cm(-2) s(-1). There is not a corresponding IVC Halpha detection towards the halo star HD 203664 at velocities exceeding similar to60 km s(- 1). Finally, both the 60- and 100-mum IRAS images show spatial coincidence, over a 0.675 x 0 625 deg(2) field, with both low- and intermediate-velocity H I gas (previously observed with the Arecibo telescope), indicating that the IVC may contain dust. Both the Halpha and tentative IRAS detections discriminate this IVC from high-velocity clouds, although the H I properties do not. When combined with the H I and optical results, these data point to a Galactic origin for at least parts of this IVC.
Resumo:
Boron abundances have been derived for seven main-sequence B- type stars from Hubble Space Telescope STIS spectra around the B III lambda2066 line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but is clearly depleted. In the other four stars, boron is undetectable, implying depletions of 1-2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. In addition, several boron- depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near-solar iron group abundances, as expected for young stars in the solar neighborhood. We have also analyzed the halo B-type star PG 0832 + 676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H] <-2.5. These and other published abundances are used to infer the star's evolutionary status as a post-asymptotic giant branch star.
Resumo:
We present FUV and UV spectroscopic observations of AD Leonis, with the aim of investigating opacity effects in the transition regions of late-type stars. The C III lines in FUSE spectra show significant opacity during both the quiescent and flaring states of AD Leonis, with up to 30% of the expected flux being lost during the latter. Other FUSE emission lines tested for opacity include those of O VI, while C IV, Si IV and N V transitions observed with STIS are also investigated. These lines only reveal modest amounts of opacity with losses during flaring of up to 20%. Optical depths have been calculated for homogeneous and inhomogeneous geometries, giving path lengths of approximate to 20 - 60 km and approximate to 10 - 30 km, respectively, under quiescent conditions. However path lengths derived during flaring are approximate to 2 - 3 times larger. These values are in excellent agreement with both estimates of the small-scale structure observed in the solar transition region, and path lengths derived previously for several other active late-type stars.
Resumo:
We present an analysis of interstellar NaI (lambda(air) = 3302.37 and 3302.98 angstrom), TiII (lambda(air) = 3383.76 angstrom) and CaII K (lambda(air) = 3933.66 angstrom) absorption features for 74 sightlines towards O- and B-type stars in the Galactic disc. The data were obtained from the Ultraviolet and Visual Echelle Spectrograph Paranal Observatory Project, at a spectral resolution of 3.75 km s(-1) and with mean signal-to-noise ratios per pixel of 260, 300 and 430 for the NaI, TiII and CaII observations, respectively. Interstellar features were detected in all but one of the TiII sightlines and all of the CaII sightlines. The dependence of the column density of these three species with distance, height relative to the Galactic plane, HI column density, reddening and depletion relative to the solar abundance has been investigated. We also examine the accuracy of using the NaI column density as an indicator of that for HI. In general, we find similar strong correlations for both Ti and Ca, and weaker correlations for Na. Our results confirm the general belief that Ti and Ca occur in the same regions of the interstellar medium ( ISM) and also that the TiII/CaII ratio is constant over all parameters. We hence conclude that the absorption properties of Ti and Ca are essentially constant under the general ISM conditions of the Galactic disc.
Resumo:
We present Ca II K (lambda(air) = 3933.661 angstrom) interstellar observations towards 20 early-type stars, to place lower distance limits to intermediate- and high-velocity clouds (IHVCs) in their lines of sight. The spectra are also employed to estimate the Ca abundance in the low-velocity gas towards these objects, when combined with Leiden-Dwingeloo 21-cm HI survey data of spatial resolution 0 degrees.5. Nine of the stars, which lie towards IHVC complexes H, K and gp, were observed with the intermediate dispersion spectrograph on the Isaac Newton Telescope at a resolution R = lambda/Delta lambda of 9000 (similar to 33 km s(-1)) and signal-to-noise ratio (S/N) per pixel of 75-140. A further nine objects were observed with the Utrecht Echelle Spectrograph on the William Herschel Telescope at R = 40 000 (similar to 7.5 km s(-1)) and S/N per pixel of 10-25. Finally, two objects were observed in both Ca II K and Na I D lines using the 2D COUDE on the McDonald 2.7-m telescope at R = 35 000 (similar to 8.5 km s(-1)). The abundance of Ca II K {log(10)(A) = log(10)[N(Ca II K)]-log(10)[N(HI)]} plotted against HI column density for the objects in the current sample with heights above the Galactic plane (z) exceeding 1000 pc is found to obey the Wakker & Mathis (2000) relation. Also, the reduced column density of Ca II K as function of z is consistent with the larger sample taken from Smoker et al. (2003). Higher S/N observations than those previously taken towards HVC complex H stars HD 13256 and HILT 190 reinforce the assertion that this lies at a distance exceeding 4000 pc. No obvious absorption is detected in observations of ALS 10407 and HD 357657 towards IVC complex gp. The latter star has a spectroscopically estimated distance of similar to 2040 pc, although this was derived assuming the star lies on the main sequence and without any reddening correction being applied. Finally, no Ca II K absorption is detected towards two stars along the line of sight to complex K, namely PG 1610+529 and PG 1710+490. The latter is at a distance of similar to 700 pc, hence placing a lower distance limit to this complex, where previously only an upper distance limit of 6800 pc was available.
Resumo:
Simple electron capture processes are studied using an orthonormal two state continuum-distorted-wave (CDW) basis. The suitability of the basis set is tested by comparing predictions for total and differential cross sections with available experimental data. Overall good agreement is obtained and the authors conclude that a relatively small CDW basis set may be suitable to model a wide variety of low-energy collisions if the members of this extended set are astutely chosen.
Resumo:
The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Measurements of electron velocity distributions emitted at 0degrees for collisions of 10- and 20-keV H+ incident ions on H-2 and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities.