923 resultados para radial distribution function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对非合作小目标激光测距系统,目标表面的反射特征对激光回波信号有很大的影响。建立测量表面双向反射分布函数(BRDF)的装置,对常用的两种热控材料——白漆涂层和F36多包层,测量了其在1064 nm波长下的双向反射分布函数。得出了白漆涂层镜面反射很小,散射角较大,利于各方向接收回波信号;而F36多包层镜面反射很强,散射角-2°~2°,不利于探测。通过由表面BRDF与由朗伯散射计算得到的最小接收功率的比较,得出了入射角大于45°入射白漆涂层时,回波信号较小;大于2°入射F36多包层时,没有回波信号。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用提拉法生长了质量优异的Yb:Ca5(PO4)2F(Yb:FAP)晶体。运用化学腐蚀,光学显微镜、扫描电子显微镜以及能量散射光谱仪观察了该晶体中的生长条纹和包裹物等宏观缺陷,以及晶体的位错腐蚀形貌、位错密度及其分布情况,同时观察了晶体中亚晶界的形态。由晶体中位错的径向变化以及生长条纹可知:晶体在生长过程中为微凸界面生长。高温下CaF2的挥发造成了在晶体生长后期熔体中组分偏离化学计量比,出现组分过冷,形成包裹物。且位错密度显著增加。Yb:FAP晶体的各向异性使得晶体在(10 10)面的位错蚀坑形状、大小以

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First-principles calculations for the temporal characteristics of hole-phonon relaxation in the valence band of titanium dioxide and zinc oxide have been performed. A first-principles method for the calculations of the quasistationary distribution function of holes has been developed. The results show that the quasistationary distribution of the holes in TiO2 extends to an energy level approximately 1eV below the top of the valence band. This conclusion in turn helps to elucidate the origin of the spectral dependence of the photocatalytic activity of TiO2. Analysis of the analogous data for ZnO shows that in this material spectral dependence of photocatalytic activity in the oxidative reactions is unlikely.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I simulated somatic growth and accompanying otolith growth using an individual-based bioenergetics model in order to examine the performance of several back-calculation methods. Four shapes of otolith radius-total length relations (OR-TL) were simulated. Ten different back-calculation equations, two different regression models of radius length, and two schemes of annulus selection were examined for a total of 20 different methods to estimate size at age from simulated data sets of length and annulus measurements. The accuracy of each of the twenty methods was evaluated by comparing the back-calculated length-at-age and the true length-at-age. The best back-calculation technique was directly related to how well the OR-TL model fitted. When the OR-TL was sigmoid shaped and all annuli were used, employing a least squares linear regression coupled with a log-transformed Lee back-calculation equation (y-intercept corrected) resulted in the least error; when only the last annulus was used, employing a direct proportionality back-calculation equation resulted in the least error. When the OR-TL was linear, employing a functional regression coupled with the Lee back-calculation equation resulted in the least error when all annuli were used, and also when only the last annulus was used. If the OR-TL was exponentially shaped, direct substitution into the fitted quadratic equation resulted in the least error when all annuli were used, and when only the last annulus was used. Finally, an asymptotically shaped OR-TL was best modeled by the individually corrected Weibull cumulative distribution function when all annuli were used, and when only the last annulus was used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a novel framework to construct a geometric and photometric model of a viewed object that can be used for visualisation in arbitrary pose and illumination. The method is solely based on images and does not require any specialised equipment. We assume that the object has a piece-wise smooth surface and that its reflectance can be modelled using a parametric bidirectional reflectance distribution function. Without assuming any prior knowledge on the object, geometry and reflectance have to be estimated simultaneously and occlusion and shadows have to be treated consistently. We exploit the geometric and photometric consistency using the fact that surface orientation and reflectance are local invariants. In a first implementation, we demonstrate the method using a Lambertian object placed on a turn-table and illuminated by a number of unknown point light-sources. A discrete voxel model is initialised to the visual hull and voxels identified as inconsistent with the invariants are removed iteratively. The resulting model is used to render images in novel pose and illumination. © 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The capacity of peak-power limited, single-antenna, non-coherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary & ergodic fading processes of a given spectral distribution function whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approximate solution for the first passage probability of a stationary Gaussian random process is presented which is based on the estimation of the mean clump size. A simple expression for the mean clump size is derived in terms of the cumulative normal distribution function, which avoids the lengthy numerical integrations which are required by similar existing techniques. The method is applied to a linear oscillator and an ideal bandpass process and good agreement with published results is obtained. By making a slight modification to an existing analysis it is shown that a widely used empirical result for the asymptotic form of the first passage probability can be deduced theoretically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper demonstrates the nonstationarity of algal population behaviors by analyzing the historical populations of Nostocales spp. in the River Darling, Australia. Freshwater ecosystems are more likely to be nonstationary, instead of stationary. Nonstationarity implies that only the near past behaviors could forecast the near future for the system. However, nonstionarity was not considered seriously in previous research efforts for modeling and predicting algal population behaviors. Therefore the moving window technique was incorporated with radial basis function neural network (RBFNN) approach to deal with nonstationarity when modeling and forecasting the population behaviors of Nostocales spp. in the River Darling. The results showed that the RBFNN model could predict the timing and magnitude of algal blooms of Nostocales spp. with high accuracy. Moreover, a combined model based on individual RBFNN models was implemented, which showed superiority over the individual RBFNN models. Hence, the combined model was recommended for the modeling and forecasting of the phytoplankton populations, especially for the forecasting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ni silicide formed at low temperature on Si nanowire has been analyzed by atom probe tomography (APT) thanks to a special technique for sample preparation. A method of preparation has been developed using the focused ion beam (FIB) for the APT analysis of nanowires (NWs). This method allow for the measurement of the radial distribution when a NW is cut, buried in a protective metal matrix, and finally mounted on the APT support post. This method was used for phosphorous doped Si NWs with or without a silicide shell, and allows obtaining the concentration and distribution of chemical elements in three-dimensions (3D) in the radial direction of the NWs. The distribution of atoms in the NWs has been measured including dopants and Au contamination. These measurements show that δ-Ni2Si phase is formed on Si NW, Au is found as cluster at the Ni/δ-Ni2Si interface and P is segregated at the δ-Ni2Si/ Si NW interface. The results obtained on NWs after silicidation were compared with the silicide on the Si substrate, showing that the same silicide phase δ-Ni2Si formed in both cases (NWs and substrate). © 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mu m were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 +/- 47 and 201 +/- 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 +/- 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 +/- 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 +/- 0.88 and 3.16 +/- 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mu m-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mu m-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.