1000 resultados para quantum gates
Resumo:
All computers process information electronically. A processing method based on magnetism is reported here, in which networks of interacting submicrometer magnetic dots are used to perform logic operations and propagate information at room temperature. The logic states are signaled by the magnetization direction of the single-domain magnetic dots; the dots couple to their nearest neighbors through magnetostatic interactions. Magnetic solitons carry information through the networks, and an applied oscillating magnetic field feeds energy into the system and serves as a clock. These networks offer a several thousandfold increase in integration density and a hundredfold reduction in power dissipation over current microelectronic technology.
Resumo:
Colliding pulse modelocking is demonstrated for the first time in quantum dot lasers. Using 3.9 mm-long devices with a 245 pm-long central absorber, 7 ps pulses at a repetition rate of 20 GHz is obtained. For Gaussian pulses a time-bandwidth product close to the Fourier transform limit is determined. These results confirm the potential of quantum dot lasers for high repetition rate harmonic modelocking.
Resumo:
In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380 nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N/Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5 nm, a photoluminescence internal efficiency of 67% for peak emission at 382 nm at room temperature. (c) 2007 American Institute of Physics.
Resumo:
We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
MBE regrowth on patterned np-GaAs wafers has been used to fabricate GaAs/AlGaAs double barrier resonant tunnel diodes with a side-gate in the plane of the quantum well. The physical diameters vary from 1 to 20 μm. For a nominally 1 μm diameter diode the peak current is reduced by more than 95% at a side-gate voltage of -2 V at 1.5 K, which we estimate corresponds to an active tunnel region diameter of 75 nm ± 10 nm. At high gate biases additional structure appears in the conductance data. Differential I-V measurements show a linear dependence of the spacing of subsidiary peaks on gate bias indicating lateral quantum confinement. © 1996 American Institute of Physics.
Resumo:
We present a method to experimentally characterize the gain filter and calculate a corresponding parabolic gain bandwidth of lasers that are described by "class A" dynamics by solving the master equation of spectral condensation for Gaussian spectra. We experimentally determine the gain filter, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror. © 2010 Optical Society of America.
A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays
Resumo:
We report on a quantum dot sensitized solar cell (QDSSC) based on ZnO nanorod coated vertically aligned carbon nanotubes (VACNTs). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on VACNT/ZnO/CdSe is longer than that for a device based on ZnO/CdSe, indicating that the charge recombination at the interface is reduced by the presence of the VACNTs. Due to the increased surface area and longer electron lifetime, a power conversion efficiency of 1.46% is achieved for the VACNT/ZnO/CdSe devices under an illumination of one Sun (AM 1.5G, 100 mW/cm2). © 2010 Elsevier B.V.