973 resultados para protein tyrosine kinase


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most of oral targeted therapies are tyrosine kinase inhibitors (TKIs). Oral administration generates a complex step in the pharmacokinetics (PK) of these drugs. Inter-individual PK variability is often large and variability observed in response is influenced not only by the genetic heterogeneity of drug targets, but also by the pharmacogenetic background of the patient (e.g. cytochome P450 and ABC transporter polymorphisms), patient characteristics such as adherence to treatment and environmental factors (drug-drug interactions). Retrospective studies have shown that targeted drug exposure, reflected in the area under the plasma concentration-time curve (AUC) correlates with treatment response (efficacy/toxicity) in various cancers. Nevertheless levels of evidence for therapeutic drug monitoring (TDM) are however heterogeneous among these agents and TDM is still uncommon for the majority of them. Evidence for imatinib currently exists, others are emerging for compounds including nilotinib, dasatinib, erlotinib, sunitinib, sorafenib and mammalian target of rapamycin (mTOR) inhibitors. Applications for TDM during oral targeted therapies may best be reserved for particular situations including lack of therapeutic response, severe or unexpected toxicities, anticipated drug-drug interactions and/or concerns over adherence treatment. Interpatient PK variability observed with monoclonal antibodies (mAbs) is comparable or slightly lower to that observed with TKIs. There are still few data with these agents in favour of TDM approaches, even if data showed encouraging results with rituximab, cetuximab and bevacizumab. At this time, TDM of mAbs is not yet supported by scientific evidence. Considerable effort should be made for targeted therapies to better define concentration-effect relationships and to perform comparative randomised trials of classic dosing versus pharmacokinetically-guided adaptive dosing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Her2/neu is a tyrosine kinase receptor which stimulates cell growth. The receptor is overexpressed in about 20% of breast cancers. Her2/neu expression is an indicator of poor prognosis but also the target of the treatment of breast cancer using humanised anti-Her2/ neu antibodies. Only cancers overexpressing the protein will respond to this therapy, but which has significant (cardiac) side effects and is expensive. It is therefore important to test for the overexpression of the protein on breast cancer cells. This paper discusses how this can be done and ongoing research into new therapeutic options targeting the involved signaling pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Melanoma is the cancer with the fastest incidence increase in Switzerland. 30% of the cases arise before the age of 50 years. Once metastatic, the median survival under current systemic therapies is about 8 months, with less than 5% of patients alive at 5 years. Many efforts in the understanding of cellular biology, intracellular signaling pathways, as well as the role of cellular immunity have been made in the recent years. This has resulted in the development of novel and very promising therapies. In this review, we will cover the results obtained with targeted therapies such as "tyrosin kinase inhibitors" (TKI), as well as those obtained with a monoclonal antibody directed against the CTLA-4 receptor of lymphocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The exceptionally diverse species flocks of cichlid fishes in East Africa are prime examples of parallel adaptive radiations. About 80% of East Africa's more than 1 800 endemic cichlid species, and all species of the flocks of Lakes Victoria and Malawi, belong to a particularly rapidly evolving lineage, the haplochromines. One characteristic feature of the haplochromines is their possession of egg-dummies on the males' anal fins. These egg-spots mimic real eggs and play an important role in the mating system of these maternal mouthbrooding fish. RESULTS: Here, we show that the egg-spots of haplochromines are made up of yellow pigment cells, xanthophores, and that a gene coding for a type III receptor tyrosine kinase, colony-stimulating factor 1 receptor a (csf1ra), is expressed in egg-spot tissue. Molecular evolutionary analyses reveal that the extracellular ligand-binding and receptor-interacting domain of csf1ra underwent adaptive sequence evolution in the ancestral lineage of the haplochromines, coinciding with the emergence of egg-dummies. We also find that csf1ra is expressed in the egg-dummies of a distantly related cichlid species, the ectodine cichlid Ophthalmotilapia ventralis, in which markings with similar functions evolved on the pelvic fin in convergence to those of the haplochromines. CONCLUSION: We conclude that modifications of existing signal transduction mechanisms might have evolved in the haplochromine lineage in association with the origination of anal fin egg-dummies. That positive selection has acted during the evolution of a color gene that seems to be involved in the morphogenesis of a sexually selected trait, the egg-dummies, highlights the importance of further investigations of the comparative genomic basis of the phenotypic diversification of cichlid fishes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nilotinib, a novel tyrosine kinase inhibitor (TKI) that inhibits BCR-ABL, the stem cell factor receptor (KIT), and platelet-derived growth factor receptor-alpha (PDGFRα), is approved for the treatment of patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and those with CML that is imatinib-resistant or -intolerant. Due to its potent inhibition of KIT and PDGFRα--the two tyrosine kinases that are the central oncogenic mechanisms of gastrointestinal stromal tumors (GIST)--nilotinib also has been investigated for potential efficacy and safety in patients with GIST who have progressed on other approved treatments. Initial results have been encouraging, as nilotinib has demonstrated clinical efficacy and safety in a phase I trial as either a single agent or in combination with imatinib, as well as in heavily pretreated patients with GIST in a compassionate use program. In addition, the phase III trial of nilotinib versus best supportive care (with or without a TKI at the investigator's discretion) indicated that nilotinib may have efficacy in some third-line patients. Furthermore, the Evaluating Nilotinib Efficacy and Safety in Clinical Trials (ENEST g1 trial), a phase III randomized, open-label study comparing the safety and efficacy of imatinib versus nilotinib in the first-line treatment of patients with GIST, is currently under way. Other studies with nilotinib either have been initiated or are in development. Based on published and accruing clinical data, nilotinib shows potential as a new drug in the clinician's armamentarium for the management of GIST.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arenaviruses are enveloped negative-strand RNA viruses that contain a bi-segmented genome. They are rodent-borne pathogens endemic to the Americas and Africa, with the exception of lymphocytic choriomeningitis virus (LCMV) that is world-wide distributed. The arenaviruses include numerous important human pathogens including the Old World arenavirus Lassa virus (LASV), the causative agent of a severe viral hemorrhagic fever in humans with several hundred thousand infections per year in Africa and thousands of deaths. Viruses are obligatory intracellular parasites, strictly depending on cellular processes and factors to complete their replication cycle. The binding of a virus to target cells is the first step of every viral infection, and is mainly mediated by viral proteins that can directly engage cellular receptors, providing a key determinant for viral tropism. This early step of infection represents a promising target to block the pathogen before it can take control over the host cell. Old World arenaviruses, such as LASV and LCMV, bind to host cells via attachment to their main receptor, dystroglycan (DG), an ubiquitous receptor for extracellular matrix proteins. The engagement of DG by LASV results in a fast internalization and transfer the virus to late endosomal compartment suggesting that the virus binding to DG causes marked changes in the dynamics of the receptor. These events could result in the clustering of the receptor and subsequent induction of signaling that could be modulated by the virus. Recently, numerous findings also suggest the presence of alternative receptor(s) for LASV in absence of the main DG receptor. In my first project, I was interested to investigate the effects of virus-receptor binding on the tyrosine phosphorylation of the cytoplasmic domain of DG and to test if this post-translational modification was crucial for the internalization of the LASV-receptor complex. We found that engagement of cellular DG by a recombinant LCMV expressing the envelope GP of LASV in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. Virus-induced dissociation of utrophin and consequent virus internalization were affected by the broadly specific tyrosine kinase inhibitor genistein. We speculate that the detachment of virus- bound DG from the actin-based cytoskeleton following DG phosphorylation may facilitate subsequent endocytosis of the virus-receptor complex. In the second project, I was interested to characterize the newly indentified LASV alternative receptor Axl in the context of productive arenavirus infection. In a first step, we demonstrated that Axl supports productive infection by rLCMV-LASVGP in a DG-independent manner. In line with previous studies, cell entry of rLCMV-LASVGP via Axl was less efficient when compared to functional DG. Interestingly, Axl-mediated infection showed rapid kinetics similar to DG-dependent entry. Using a panel of inhibitors, we found that Axl-mediated cell entry of rLCMV-LASVGP involved a clathrin-independent pathway that critically depended on actin and dynamin and was sensitive to EIPA but not to PAK inhibitors, compatible with a macropinocytosis-like mechanism of entry. In a next step, we aimed to investigate the molecular mechanism by which rLCMV-LASVGP recognizes Axl. Phosphatidylserine (PS) is the natural ligand of Axl via the adaptor protein Gas6. We detected the presence of PS in the envelope of Old World arenaviruses, suggesting that PS could mediate Axl-virus binding, in a mechanism of apoptotic mimicry already described for other viruses. Whether envelope PS and/or the GP of LASV plays any role in virus entry via Axl is still an open question. The molecular mechanisms underlying host cell-virus interaction are of particular interest to answer basic scientific questions as well as to apply key findings to translational research. Understanding pathogen induced-signaling and its link to invasion of the host cell is of great importance to develop drugs for therapeutic intervention against highly pathogenic viruses like LASV. - Les Arenavirus sont des virus enveloppés à ARN négatifs organisés sous forme de génome bisegmenté. Ils sont véhiculés par les rongeurs et se retrouvent de manière endémique aux Amériques et en Afrique avec l'exception du virus de la chorioméningite lymphocytaire (LCMV) qui lui est distribué mondialement. De nombreux pathogènes humains font parti de la famille des Arenavirus dont le virus de l'Ancien Monde Lassa (LASV), un agent responsable de fièvres hémorragiques sévères chez les humains. Le virus de Lassa cause plusieurs centaines de milliers d'infections par année en Afrique ainsi que des milliers de morts. De manière générale, les virus sont des parasites intracellulaires obligatoires qui dépendent strictement de processus et facteurs cellulaires pour clore leur cycle de réplication. L'attachement d'un virus à sa cellule cible représente la première étape de chaque infection virale et est principalement dirigée par des protéines virales qui interagissent directement avec leur récepteurs cellulaires respectifs fournissant ainsi un indicateur déterminant pour le tropisme d'un virus. Cette première étape de l'infection représente aussi une cible prometteuse pour bloquer le pathogène avant qu'il ne puisse prendre le contrôle de la cellule. Les Arenavirus de l'Ancien Monde comme LASV et LCMV s'attachent à la cellule hôte en se liant à leur récepteur principal, le dystroglycan (DG), un récepteur ubiquitaire pour les protéines de la matrice extracellulaire. La liaison du DG par LASV résulte en une rapide internalisation transférant le virus aux endosomes tardifs suggérant ainsi que l'attachement du virus au DG peut provoquer des changements marqués dans la dynamique moléculaire du récepteur. Ces événements sont susceptibles d'induire un regroupement du récepteur à la surface cellulaire, ainsi qu'une induction subséquente qui pourrait être, par la suite, modulée par le virus. Récemment, plusieurs découvertes suggèrent aussi la présence d'un récepteur alternatif pour LASV en l'absence du récepteur principal, le DG. Concernant mon premier projet, j'étais intéressée à étudier les effets de la liaison virus- récepteur sur la phosphorylation des acides aminés tyrosines se trouvant dans la partie cytoplasmique du DG, le but étant de tester si cette modification post-translationnelle était cruciale pour Γ internalisation du complexe LASV-DG récepteur. Nous avons découvert que l'engagement du récepteur DG par le virus recombinant LCMV, exprimant la glycoprotéine de LASV, dans des cellules épithéliales humaines induit une phosphorylation de résidu(s) tyrosine se situant dans le domaine cytoplasmique du DG. La liaison de la glycoprotéine de LASV au DG induit par la suite la dissociation de la protéine adaptatrice utrophine du complexe virus-DG récepteur. Nous avons observé que cette dissociation de l'utrophine, induite par le virus, ainsi que son internalisation, sont affectées par l'inhibiteur à large spectre des tyrosines kinases, la génistéine. Nous avons donc supposé que le détachement du virus, lié au récepteur DG, du cytosquelette d'actine suite à la phosphorylation du DG faciliterait l'endocytose subséquente du complexe virus-récepteur. Dans le second projet, j'étais intéressée à caractériser le récepteur alternatif Axl qui a été récemment identifié dans le contexte de l'infection productive des Arenavirus. Dans un premier temps, nous avons démontré que le récepteur alternatif Axl permet l'infection des cellules par le virus LCMV recombinant LASV indépendamment du récepteur DG. Conformément aux études publiées précédemment, nous avons pu observer que l'entrée du virus recombinant LASV via Axl est moins efficace que via le récepteur principal DG. De façon intéressante, nous avons aussi remarqué que l'infection autorisée par Axl manifeste une cinétique virale d'entrée similaire à celle observée avec le récepteur DG. Utilisant un éventail de différents inhibiteurs, nous avons trouvé que l'entrée du virus recombinant rLCMV-LASVGP via Axl implique une voie d'entrée indépendante de la clathrine et dépendant de manière critique de l'actine et de la dynamine. Cette nouvelle voie d'entrée est aussi sensible à l'EIPA contrairement aux inhibiteurs PAK indiquant un mécanisme d'entrée compatible avec un mécanisme de macropinocytose. L'étape suivante du projet a été d'investiguer le mécanisme moléculaire par lequel le virus recombinant rLCMV-LASVGP reconnaît le récepteur alternatif Axl. La phosphatidylsérine (PS) se trouve être un ligand naturel pour Axl via la protéine adaptatrice Gas6. Nous avons détecté la présence de PS dans l'enveloppe des Arenavirus du Vieux Monde suggérant que la PS pourrait médier la liaison du virus à Axl dans un mécanisme de mimétisme apoptotique déjà observé et décrit pour d'autres virus. Cependant, il reste encore à déterminer qui de la PS ou de la glycoprotéine de l'enveloppe virale intervient dans le processus d'entrée de LASV via le récepteur alternatif Axl. Les mécanismes moléculaires à la base de l'interaction entre virus et cellule hôte sont d'intérêts particuliers pour répondre aux questions scientifiques de base ainsi que dans l'application de découvertes clés pour la recherche translationnelle. La compréhension de la signalisation induite par les pathogènes ainsi que son lien à l'invasion de la cellule hôte est d'une importance considérable pour le développement de drogues pour l'intervention thérapeutique contre les virus hautement pathogènes comme LASV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cilengitide is a high-affinity cyclic pentapeptdic alphaV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through alphaVbeta3/alphaVbeta5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the beta1 family, and little is known on the effect of cilengitide on endothelial cells expressing alphaVbeta3 but adhering through beta1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on alphaVbeta3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the beta1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface alphaVbeta3, stimulated phosphorylation of FAK (Y(397) and Y(576/577)), Src (S(418)) and VE-cadherin (Y(658) and Y(731)), redistributed alphaVbeta3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density beta1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of alphaVbeta3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glioma has been considered resistant to chemotherapy and radiation. Recently, concomitant and adjuvant chemoradiotherapy with temozolomide has become the standard treatment for newly diagnosed glioblastoma. Conversely (neo-)adjuvant PCV (procarbazine, lomustine, vincristine) failed to improve survival in the more chemoresponsive tumor entities of anaplastic oligoastrocytoma and oligodendroglioma. Preclinical investigations suggest synergism or additivity of radiotherapy and temozolomide in glioma cell lines. Although the relative contribution of the concomitant and the adjuvant chemotherapy, respectively, cannot be assessed, the early introduction of chemotherapy and the simultaneous administration with radiotherapy appear to be key for the improvement of outcome. Epigenetic inactivation of the DNA repair enzyme methylguanine methyltransferase (MGMT) seems to be the strongest predictive marker for outcome in patients treated with alkylating agent chemotherapy. Patients whose tumors do not have MGMT promoter methylation are less likely to benefit from the addition of temozolomide chemotherapy and require alternative treatment strategies. The predictive value of MGMT gene promoter methylation is being validated in ongoing trials aiming at overcoming this resistance by a dose-dense continuous temozolomide administration or in combination with MGMT inhibitors. Understanding of molecular mechanisms allows for rational targeting of specific pathways of repair, signaling, and angiogenesis. The addition of tyrosine kinase inhibitors vatalanib (PTK787) and vandetinib (ZD6474), the integrin inhibitor cilengitide, the monoclonal antibodies bevacizumab and cetuximab, the mammalian target of rapamycin inhibitors temsirolimus and everolimus, and the protein kinase C inhibitor enzastaurin, among other agents, are in clinical investigation, building on the established chemoradiotherapy regimen for newly diagnosed glioblastoma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP). MATERIALS AND METHODS: Genomic DNA samples from 343 CD and 663 non-IBD control patients (male and female) from a combined German, Swiss, and Polish cohort were genotyped for the presence of the PTPN2 SNPs, rs2542151, and rs1893217. PTPN2-variant rs1893217 was introduced into T(84) IEC or THP-1 cells using a lentiviral vector. RESULTS: We identified a novel association between the genetic variant, rs1893217, located in intron 7 of the PTPN2 gene and CD. Human THP-1 monocytes carrying this variant revealed increased MAPK activation as well as elevated mRNA expression of T-bet transcription factor and secretion of interferon-γ in response to the bacterial wall component, MDP. In contrast, secretion of interleukin-8 and tumor necrosis factor were reduced. In both, T(84) IEC and THP-1 monocytes, autophagosome formation was impaired. CONCLUSIONS: We identified a novel CD-associated PTPN2 variant that modulates innate immune responses to bacterial antigens. These findings not only provide key insights into the effects of a functional mutation on a clinically relevant gene, but also reveal how such a mutation could contribute to the onset of disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systemic mastocytosis is characterized by an excessive proliferation of mast cells and their accumulation in different organs. Avoidance of trigger factors leading to anaphylaxis is a general measure valid for all forms of mastocytosis. A premedication is necessary in case of surgery, anesthesia or administration of radiocontrast agents. Symptomatic treatment comprises antihistamines, anti-leukotrienes, proton pump inhibitors and topical corticosteroids. Indolent mastocytosis with refractory symptoms, the rare cases of aggressive mastocytosis with organ dysfunction and the even rarer mast cell leukemia require cytoreductive therapy. First-line agents are interferon alpha 2b and imatinib, a tyrosine kinase inhibitor. To date there is no curative treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pathogenesis of hepatosplenic T-cell lymphoma (HSTL), a rare entity mostly derived from γδ T cells and usually with a fatal outcome, remains largely unknown. In this study, HSTL samples (7γδ and 2αβ) and the DERL2 HSTL cell line were subjected to combined gene-expression profiling and array-based comparative genomic hybridization. Compared with other T-cell lymphomas, HSTL had a distinct molecular signature irrespective of TCR cell lineage. Compared with peripheral T-cell lymphoma, not otherwise specified and normal γδ T cells, HSTL overexpressed genes encoding NK-cell-associated molecules, oncogenes (FOS and VAV3), the sphingosine-1-phosphatase receptor 5 involved in cell trafficking, and the tyrosine kinase SYK, whereas the tumor-suppressor gene AIM1 (absent in melanoma 1) was among the most down-expressed. We found highly methylated CpG islands of AIM1 in DERL2 cells, and decitabine treatment induced a significant increase in AIM1 transcripts. Syk was present in HSTL cells and DERL2 cells contained phosphorylated Syk and were sensitive to a Syk inhibitor in vitro. Genomic profiles confirmed recurrent isochromosome 7q (n = 6/9) without alterations at the SYK and AIM1 loci. Our results identify a distinct molecular signature for HSTL and highlight oncogenic pathways that offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents.