938 resultados para pressure-assisted field-amplified sample injection
Resumo:
Ba1-xCaxTiO3, Ba1-xSrxTiO3 and Sr1-xCaxTiO3 (x = 0, 0.25, 0.50, 0.75 and 1) nanoparticles were synthesized using the microwave-assisted hydrothermal method. Samples were prepared for 40 minutes at 140°C under a pressure of 3 MPa using an adapted domestic microwave oven. The samples were characterized by X-Ray diffraction (XRD), scanning electron microscopy (FE-SEM), and Raman, photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies. XRD data show that ceramic powders have crystalline phases associated with a short-range structural disorder. This structural disorder is confirmed by Raman spectral bands indicating multi-phonon processes and the presence of defects or impurities. Such defects account for a broad band in the photoluminescence spectrum in the green light (460 nm) region for all samples. Gap energy variation, obtained from UV-Vis spectra, suggest a non-uniform band structure of these titanates in accordance with the PL results. The morphology of each sample is changed with doping and varies from a spherical to cubic appearance for energy minimization.
Resumo:
The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.
Flux-Line-Lattice Melting and Upper Critical Field of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta Ceramic Samples
Resumo:
We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.
Resumo:
Full validation of the electrochemical mechanisms so far postulated as driving force of electric field-assisted non-spontaneous crystallization development in given glasses has suffered experimental restrictions. In this work, we looked into origin of this phenomenon in lead oxyfluoroborate glasses, resulting in beta-PbF2 growth even below the corresponding glass transition temperatures, through achieving a systematic study of not only Pt,Ag/Glass/Ag,Pt- but also Pt,Ag/Glass/YSZ:PbF2/Ag,Pt-type cells, where YSZ:PbF2 represents a two-phase system (formed by Y2O3-doped ZrO2 and PbF2). It is demonstrated that crystallization induction in these glasses involves Pb2+ ions reduction at the cathode, the phenomenon being, however, confirmed only when the F- ions were simultaneously also able to reach the anode for oxidation, after assuring either a direct glass-anode contact or percolation pathways for free fluoride migration across the YSZ:PbF2 mixtures. A further support of this account is that the electrochemically induced beta-PbF2 phase crystallizes showing ramified-like microstructure morphology that arises, accordingly, from development of electroconvective diffusion processes under electric field action.
Resumo:
Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.
Resumo:
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW–SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.
Resumo:
The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.
Resumo:
PURPOSE: To compare tunnelled scleral intravitreal injection with straight scleral intravitreal injection concerning short-term intraocular pressure (IOP) changes, occurrence and amount of vitreous reflux, and patient discomfort. METHODS: Sixty patients were randomly allocated to two groups (tunnelled intravitreal injection and straight intravitreal injection). IOP was measured before and directly (<1 minute) after the injection of 0.05 mL of an antivascular endothelial growth factor agent and then every 5 minutes until IOP was <30 mmHg. Occurrence and amount of vitreous reflux were recorded. Patient discomfort during injection was assessed with a Wong-Baker faces pain rating scale. RESULTS: IOP (mmHg +/- SD) increased significantly directly after injection to 35.97 +/- 8.13 (tunnelled intravitreal injection) and 30.19 +/- 12.14 (straight intravitreal injection). These pressure spikes differed significantly between both groups (P = 0.01, mean difference: -7.11). Five minutes after injection, there was no significant difference in IOP increase between the groups. All IOP measurements were <30 mmHg after 15 minutes. Occurrence and amount of vitreous reflux were significantly higher with straight intravitreal injection. There was no significant difference in Wong-Baker faces pain rating scale score between both groups. CONCLUSION: Tunnelled intravitreal injection seems to be the technique of choice for low-volume intravitreal injection (0.05 mL). There is neither a difference in patient discomfort nor a difference in IOP increase 5 minutes after injection between both groups. Significantly less vitreous reflux with tunnelled intravitreal injection should lead to less postinjectional drug loss.
Resumo:
Globalisation, this is my thesis, change first the trade of goods and services, produce a mercantilist pressure on different political fields and affect finally as a consequence effectively our normative comprehension of education. As states will be more and more under pressure to compete on an economic basis against each other they will rank decisions which generate jobs higher than any thing else. Also Education policy is changing its focus. E-learning is a driving force to bring together education, trade of ICT equipment, trade of educational used content and trade of study degrees and to merge the different objectives into effective distribution of knowledge and maximising profits.
Resumo:
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Resumo:
Abstract Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in �250 samples and �1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into �0.1 m during the �4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the centimeter scale, with no evidence of a borehole-disturbed zone. In situ anisotropy ratios for diffusion, derived for the first time directly from field data, are larger for HTO and Na-22 (�5) than for anions (�3�4 for Br and I). The lower ionic strength of the pore water at this location (�0.22 M) as compared to locations of earlier experiments in the Mont Terri URL (�0.39 M) had no notable effect on the anion accessible pore fraction for Cl, Br, and I: the value of 0.55 is within the range of earlier data. Detailed transport simulations involving different codes will be presented in a companion paper.
Resumo:
Objective: To determine the prevalence of and the relationships between the degree and source of hyperandrogenemia, ovulatory patterns and cardiovascular disease risk indicators (blood pressure, indices or amount of obesity and fat distribution) in women with menstrual irregularities seen at endocrinologists' clinic. Design: A cross-sectional study design. Participants: A sample of 159 women with menstrual irregularities, aged 15-44, seen at endocrinologists' clinic. Main Outcome Measures: androgen levels, body mass index (BMI), waist-hip ratio (WHR), systolic and diastolic blood pressure (SBP & DBP), source of androgens, ovulatory activity. Results: The prevalence of hyperandrogenemia was 54.7% in this study sample. As expected, women with acne or hirsutism had an odds ratio 12.5 (95%CI = 5.2-25.5) times and 36 (95%CI = 12.9-99.5) times more likely to have hyperandrogenemia than those without acne or hirsutism. The main findings of this study were the following: Hyperandrogenemic women were more likely to have oligomenorrheic cycles (OR = 3.8, 95%CI = 1.5-9.9), anovulatory cycles (OR = 6.6, 95%CI = 2.8-15.4), general obesity (BMI $\ge$ 27) (OR = 6.8, 95%CI = 2.2-27.2) and central obesity (WHR $\ge$ 127) (OR = 14.5, 95%CI = 6.1-38.7) than euandrogenemic women. Hyperandrogenemic women with non-suppressible androgens had a higher mean BMI (29.3 $\pm$ 8.9) than those with suppressible androgens (27.9 $\pm$ 7.9); the converse was true for abdominal adiposity (WHR). Hyperandrogenemic women had a 2.4 odds ratio (95%CI = 1.0-6.2) for an elevated SBP and a 2.7 odds ratio (95%CI = 0.8-8.8) for elevated DBP. When age differences were accounted for, this relationship was strengthened and further strengthened when sources of androgens were controlled. When the differences in BMI were controlled, the odds ratio for elevated SBP in hyperandrogenemic women increased to 8.8 (95%CI = 1.1-69.9). When the age, the source of androgens, the amount of obesity and the type of obesity were controlled, hyperandrogenemic women had 13.5 (95%CI = 1.1-158.9) odds ratio for elevated SBP. Conclusions: In this study population, the presence of menstrual irregularities are highly predictive for the presence of elevated androgens. Women with elevated androgens have a high risk for obesity, more specifically for central obesity. The androgenemic status is an independent predictor of blood pressure elevation. It is probable that in the general population, the presence of menstrual irregularities are predictive of hyperandrogenemia. There is a great need for a population study of the prevalence of hyperandrogenemia and for longitudinal studies in hyperandrogenemic women (adrenarche to menopause) to investigate the evolution of these relationships. ^
Resumo:
Since October 2011, the enzymatic lysis of Dupuytren's cord was introduced in Switzerland (Xiapex(®), Auxilium Pharmaceuticals, Pfizer). Here we present our first university experience and underline the major role of ultrasound during the injection. Between December 2011 and February 2013, 52 injections were performed to eliminate 43 Dupuytren's cords in 33 patients. The mean age of the patients was 64.4 ± 8.5 years. Complications were documented for each patient. Before, directly after and after a minimum of 6 months post-injection, the contracture of the treated joint was measured with use of a goniometer. The DASH score was evaluated after a minimum of 6 months and the patients were asked to subjectively evaluate the outcome of the treatment (very good, good, mild, poor) and whether they would reiterate it if necessary. Four skin defects, one lymphangitis, and one CRPS were responsible for a complication rate of 18%. There was no infection and no tendon rupture in the series. The mean MCP joint contracture was respectively 36.8 ± 27.4°, 3.5 ± 7.8° (gain of mobility compared to the preoperative situation 33.3°, P<0.001), and 8.4 ± 13.9° (gain 28.4°, P<0.001) respectively before, just after and at the long-term clinical control. The mean PIP joint contracture was respectively 36.5 ± 29.1°, 5.9 ± 6.7° (gain 30.6°, P<0.001), and 15.1 ± 13.8° (gain 21.4°, P<0.001) respectively before injection, just after and at the long-term clinical control. The DASH score decreased from 24 ± 14 to 7 ± 9 (P<0.001). Eighty-one per cent of the patients were satisfied or very satisfied of the treatment. All but two would reiterate the treatment if necessary. Ultrasound is able to target the injection of collagenase in order to reduce complications. The short-term results of this non-invasive therapy are very promising however comparison with conventional procedures is difficult as the long-term results are lacking.
Resumo:
A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.
Resumo:
Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.