952 resultados para positioning and differentiation
Resumo:
The development of the gastric mucosa is controlled by hormones, growth factors and feeding behavior. Early weaning (EW), which means the abrupt interruption of suckling, increases proliferation and differentiation in the rat gastric epithelium. Transforming growth factor alpha(TGF alpha) is secreted in the stomach, binds to the epidermal growth factor receptor( EGFR) and may control cell proliferation, differentiation and migration. Here, we investigated the influence of suckling-weaning transition on the differentiation of mucous neck cells in the stomach and its association to the expression of TGF alpha and EGFR. Fifteen-day-old Wistar rats were divided into two groups: suckling( control), in which pups were kept with the dam, and early weaning( EW), in which rats were separated from their mother and fed with hydrated powdered chow. TGF alpha and EGFR levels were increased at 18 days in EW animals compared to control ones (p<0.05). Histochemical reactions with Periodic Acid-Schiff reagent+Alcian Blue or Bandeiraea simplicifolia II lectin were used to stain the mucous neck cells and showed an increase in this cell population throughout EW, which was more pronounced at 17 days when compared to suckling pups (p<0.05). These morphological results were confirmed by RT-PCR for mucin 6. The levels of mucin 6 mRNA were higher in EW animals from the 16th to the 18th day(1-3 days post-weaning) when compared to the respective control group. Inhibition of EGFR through AG1478 administration to EW animals prevented the expansion of mucous neck cell population induced by EW (p<0.05). Therefore, early weaning up regulated TGF alpha/EGFR expression and induced differentiation of mucous neck cells. Moreover, we showed that EGFR takes part in the maturation of this cell population. We conclude that regular suckling-weaning transition is crucial to guarantee the development of the gastric mucosa. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
Caspases are central players in proteolytic pathways that regulate cellular processes Such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAH15 as a novel caspase Substrate in a trial Study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence (106)DQPD/Y(110) as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Although there is accumulated evidence of a role for Notch in the developing lung, it is still unclear how disruption of Notch signaling affects lung progenitor cell fate and differentiation events in the airway epithelium. To address this issue, we inactivated Notch signaling conditionally in the endoderm using a Shh-Cre deleter mouse line and mice carrying floxed alleles of the Pofut1 gene, which encodes an O-fucosyltransferase essential for Notch-ligand binding. We also took the same conditional approach to inactivate expression of Rbpjk, which encodes the transcriptional effector of canonical Notch signaling. Strikingly, these mutants showed an almost identical lung phenotype characterized by an absence of secretory Clara cells without evidence of cell death, and showed airways populated essentially by ciliated cells, with an increase in neuroendocrine cells. This phenotype could be further replicated in cultured wild-type lungs by disrupting Notch signaling with a gamma-secretase inhibitor. Our data suggest that Notch acts when commitment to a ciliated or non-ciliated cell fate occurs in proximal progenitors, silencing the ciliated program in the cells that will continue to expand and differentiate into secretory cells. This mechanism may be crucial to define the balance of differentiated cell profiles in different generations of the developing airways. It might also be relevant to mediate the metaplastic changes in the respiratory epithelium that occur in pathological conditions, such as asthma and chronic obstructive pulmonary disease.
Resumo:
Prion protein (PrP(C)) interaction with stress inducible protein 1 (STI1) mediates neuronal survival and differentiation. However, the function of PrP(C) in astrocytes has not been approached. In this study, we show that STI1 prevents cell death in wild-type astrocytes in a protein kinase A-dependent manner, whereas PrP(C)-null astrocytes were not affected by STI1 treatment. At embryonic day 17, cultured astrocytes and brain extracts derived from PrP(C)-null mice showed a reduced expression of glial fibrillary acidic protein (GFAP) and increased vimentin and nestin expression when compared with wild-type, suggesting a slower rate of astrocyte maturation in PrP(C)-null animals. Furthermore, PrP(C)-null astrocytes treated with STI1 did not differentiate from a flat to a process-bearing morphology, as did wild-type astrocytes. Remarkably, STI1 inhibited proliferation of both wild-type and PrP(C)-null astrocytes in a protein kinase C-dependent manner. Taken together, our data show that PrP(C) and STI1 are essential to astrocyte development and act through distinct signaling pathways.(C) 2009 Wiley-Liss, Inc.
Resumo:
The e-business market is one of the fastest growing markets in Brazil, with e-business sales accounting for BRL 14.8 billion in 2010 and a growth of 40% per year (+1000% over the past 7 years). Sales-event clubs and collective bargaining websites are one of the most dynamic segments of the e-business market: the number of new players is increasing rapidly, with over 1200 collective bargaining websites currently operating in Brazil. In that context, growth and differentiation seem to be two key success factors for Coquelux. According to webshopper (23rd Edition, e-bit), growth can be achieved by targeting middle and low-income consumers from class C, who represent 50% of the total e-commerce sales. But Coquelux, which is specialized in desire and luxury brands, has built its reputation and competitive advantage through its “exclusivity”, by targeting wealthier consumers from classes A and B who are attracted by its fashionable and high-end positioning. The evolution (growth?) of this market and the development of its competition naturally raise a strategic question for Coquelux’s managers: can Coquelux grow and still maintain its competitive advantage? Should it grow by expanding its consumer base to class C? If so, how? Consumers from classes A, B or C must be targeted through the same online communication channels. Recent studies from the ABEP/ABIPEME emphasized the importance of social networks as a tool for converting new clients and gaining their loyalty, regardless of their social class. However, high-income and low-income e-consumers do not have the same consumption habits, do not respond to the same type of marketing strategies, and most importantly, do not share the same values. Thus, it seems difficult to expand Coquelux’s consumer base to class C without changing its marketing strategies and altering its image Three options were identified for Coquelux: reinforcing its leadership on the luxury segment and focusing on a small niche market (1), which would threaten its survival in the long run; completely changing its strategy and competing for a mass market through commercial brands (2), which requires major financial investments that managers don’t have access to; or finding an intermediary solution (3). This thesis’ recommendation for the third option consists in focusing on premium brands (rather than luxury) in order to increase sales volume (Coquelux’s most profitable sales happened with local desire brands) with products that appeal to class B but also attract the emerging class C which is looking for brand recognition. It could thus implement a slow entry strategy towards the mass market without damaging its main competitive advantage.
Resumo:
The expression of the MyoD, myogenin, myostatin and Hsp70 genes was estimated in chicken embryos submitted to mild cold (36 +/- 0.5degreesC) or heat (44 +/- 0.5degreesC) for 1 h. 2. Marked decreases in MyoD, myogenin and myostatin transcript levels were observed in embryos exposed to high temperature, contrasting to the higher expression of the Hsp70 mRNA detected in heat-stressed embryos. 3. The exposure of chicken embryos to low temperature significantly affected only the abundance of myogenin mRNA. 4. These findings suggest that myogenic proliferation and differentiation events are compromised by variations in environmental temperature during avian embryogenesis. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli ( Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.Results: Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside ( IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.Conclusion: The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)