941 resultados para population distribution
Resumo:
Aquesta tesi es basa en el programa de reintroducció de la llúdriga eurasiàtica (Lutra lutra) a les conques dels rius Muga i Fluvià (Catalunya) durant la segona meitat dels 1990s. Els objectius de la tesi foren demostrar la viabilitat de la reintroducció, demostrar l'èxit de la mateixa, estudiar aspectes ecològics i etològics de l'espècie, aprofitant l'oportunitat única de gaudir d'una població "de disseny" i determinar les probabilitats de supervivència de la població a llarg termini. La reintroducció de la llúdriga a les conques dels rius Muga i Fluvià va reeixir, doncs l'àrea geogràfica ocupada efectivament es va incrementar fins a un 64% d'estacions positives a l'hivern 2001-02. La troballa de tres exemplars adults nascuts a l'àrea de reintroducció és una altra prova que valida l'èxit del programa. La densitat d'exemplars calculada a través dels censos visuals ha resultat baixa (0.04-0.11 llúdrigues/km), però s'aproxima al que hom pot esperar en els primers estadis d'una població reintroduïda, encara poc nombrosa però distribuïda en una gran àrea. La mortalitat post-alliberament va ser del 22% un any després de l'alliberament, similar o inferior a la d'altres programes de reintroducció de llúdrigues reeixits. La mortalitat va ser deguda principalment a atropellaments (56%). El patró d'activitat de les llúdrigues reintroduïdes va esdevenir principalment nocturn i crepuscular, amb una escassa activitat diürna. Les seves àrees vitals van ser del mateix ordre (34,2 km) que les calculades en d'altres estudis realitzats a Europa. La longitud mitjana de riu recorreguda per una llúdriga durant 24 hores va ser de 4,2 km per les femelles i 7,6 km pels mascles. Durant el període de radioseguiment dues femelles van criar i els seus moviments van poder ser estudiats amb deteniment. La resposta de la nova població de llúdrigues a les fluctuacions estacionals en la disponibilitat d'aigua, habitual a les regions mediterrànies, va consistir en la concentració en una àrea menor durant el període de sequera estival, a causa de l'increment de trams secs, inhabitables per la llúdriga per la manca d'aliment, fet que va provocar expansions i contraccions periòdiques en l'àrea de distribució. La persistència a llarg termini de la població reintroduïda va ser estudiada mitjançant una Anàlisi de Viabilitat Poblacional (PVA). El resultat va ser un baix risc d'extinció de la població en els propers 100 anys i la majoria dels escenaris simulats (65%) van assolir el criteri d'un mínim de 90% de probabilitat de supervivència. Del model poblacional construït es dedueix que un punt clau per assegurar la viabilitat de la població reintroduïda és la reducció de la mortalitat accidental. A l'àrea d'estudi, els atropellaments causen més del 50% de la mortalitat i aquesta pot ser reduïda mitjançant la construcció de passos de fauna, el tancament lateral d'alguns trams de carretera perillosos i el control de la velocitat en algunes vies. El projecte de reintroducció ha posat a punt un protocol per a la captura, maneig i alliberament de llúdrigues salvatges, que pot contenir informació útil per a programes similars. També ha suposat una oportunitat única d'estudiar una població dissenyada artificialment i poder comparar diversos mètodes per estimar la distribució i la densitat de poblacions de llúdrigues. Per últim, la reintroducció portada a terme a les conques dels rius Muga i Fluvià ha aconseguit crear una nova població de llúdrigues, que persisteix en el temps, que es reprodueix regularment i que es dispersa progressivament, fins i tot a noves conques fluvials.
Resumo:
This thesis presents population dynamics models that can be applied to predict the rate of spread of the Neolithic transition (change from hunter-gathering to farming economics) across the European continent, which took place about 9000 to 5000 years ago. The first models in this thesis provide predictions at a continental scale. We develop population dynamics models with explicit kernels and apply realistic data. We also derive a new time-delayed reaction-diffusion equation which yields speeds about a 10% slower than previous models. We also deal with a regional variability: the slowdown of the Neolithic front when reaching the North of Europe. We develop simple reaction-diffusion models that can predict the measured speeds in terms of the non-homogeneous distribution of pre-Neolithic (Mesolithic) population in Europe, which were present in higher densities at the North of the continent. Such models can explain the observed speeds.
Resumo:
The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities.
Resumo:
Once abundant, the Newfoundland Gray-cheeked Thrush (Catharus minimus minimus) has declined by as much as 95% since 1975. Underlying cause(s) of this population collapse are not known, although hypotheses include loss of winter habitat and the introduction of red squirrels (Tamiasciurus hudsonicus) to Newfoundland. Uncertainties regarding habitat needs are also extensive, and these knowledge gaps are an impediment to conservation. We investigated neighborhood (i.e., within 115 m [4.1 ha]) and landscape scale (i.e., within 1250 m [490.8 ha]) habitat associations of Gray-cheeked Thrush in a 200-km² study area in the Long Range Mountains of western Newfoundland, where elevations range from 300-600 m and landcover was a matrix of old growth fir forest, 6- to 8-year-old clearcuts, coniferous scrub, bogs, and barrens. Thrushes were restricted to elevations above ~375 m, and occurrence was strongly positively related to elevation. Occurrence was also positively related to cover of tall scrub forest at the neighborhood scale, and at the landscape scale showed curvilinear relations with the proportion of both tall scrub and old growth forest that peaked with intermediate amounts of cover. Occurrence of thrushes was also highest when clearcuts made up 60%-70% of neighborhood landcover, but was negatively related to cover of clearcuts in the broader landscape. Finally, occurrence was highest in areas having 50% cover of partially harvested forest (strip cuts or row cuts) at the neighborhood scale, but because this treatment was limited to one small portion of the study area, this finding may be spurious. Taken together, our results suggest selection for mixed habitats and sensitivity to both neighborhood and landscape-scale habitat. More research is needed on responses of thrushes to forestry, including use of older clearcuts, partially harvested stands, and precommercially thinned clearcuts. Finally, restriction of thrushes to higher elevations is consistent with the hypothesis that they have been impacted by squirrels, because squirrels were rare or absent at these elevations.
Resumo:
Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations-the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change.
Resumo:
The Sardinian mountain newt Euproctus platycephalus, endemic to the island of Sardinia, (Italy), is considered a rare and threatened species and is classed as critically endangered by IUCN. It inhabits streams, small lakes and pools on the main mountain systems of the island. Threats from climatic and anthropogenic factors have raised concerns for the long-term survival of newt populations on the island. MtDNA sequencing was used to investigate the genetic population structure and phylogeography of this endemic species. Patterns of genetic variation were assessed by sequencing the complete Dloop region and part of the 12SrRNA, from 74 individuals representing four different populations. Analyses of molecular variance suggest that populations are significantly differentiated, and the distribution of haplotypes across the island shows strong geographical structuring. However, phylogenetic analyses also suggest that the Sardinian population consists of two distinct mtDNA groups, which may reflect ancient isolation and expansion events. Population structure, evolutionary history of the species and implications for the conservation of newt populations are discussed.
Resumo:
The regional population of the Grey-headed Fish-Eagle (Ichthyophaga ichthyaetus) in Southeast Asia is thought to be in recent decline and its conservation status Linder threat. We undertook a systematic survey in a flooded swamp forest at the Tonle Sap Lake in Cambodia and recorded 32 pairs of eagles in an area of approximately 80 km(2). Three species of water snakes were identified as eagle prey items, previously unrecorded for this species. We suggest that this eagle population has significant regional importance and discuss potential anthropogenic threats to population stability, such as water snake harvesting and construction Of upstream hydropower dams.
Resumo:
We examine the extent of population-level differentiation in life history traits of Pogonatum aloides, Polytrichum commune and Polytrichum juniperinum (Polytrichaceae) between upland and lowland localities within Britain. Reciprocal transplant studies are used to estimate the relative importance of genetic versus environmental effects on observed differences. We demonstrate significant life history differentiation between moss populations, and show that at least some of these are genetically determined, although environment and phenotypic plasticity are also significant components of the observed variation. The transplant experiments indicate divergence among populations in plasticity of male reproductive effort and of investment in vegetative shoots by females. Two tradeoffs are identified; one between the number and the size of spores, and the second between reproduction by spores versus vegetative reproduction. The patterns of life history variation observed between populations of Polytrichum juniperinum are consistent with selection along these implied tradeoff curves, and we propose that they reflect selective pressures arising from the spatial and demographic distribution of mortality at upland versus lowland sites. The results underscore the need for more studies of intra-specific life history variation in mosses.
Resumo:
The concept of an organism's niche is central to ecological theory, but an operational definition is needed that allows both its experimental delineation and interpretation of field distributions of the species. Here we use population growth rate (hereafter, pgr) to de. ne the niche as the set of points in niche space where pgr. 0. If there are just two axes to the niche space, their relationship to pgr can be pictured as a contour map in which pgr varies along the axes in the same way that the height of land above sea level varies with latitude and longitude. In laboratory experiments we measured the pgr of Daphnia magna over a grid of values of pH and Ca2+, and so defined its "laboratory niche'' in pH-Ca2+ space. The position of the laboratory niche boundary suggests that population persistence is only possible above 0.5 mg Ca2+/L and between pH 5.75 and pH 9, though more Ca2+ is needed at lower pH values. To see how well the measured niche predicts the field distribution of D. magna, we examined relevant field data from 422 sites in England and Wales. Of the 58 colonized water bodies, 56 lay within the laboratory niche. Very few of the sites near the niche boundary were colonized, probably because pgr there is so low that populations are vulnerable to extinction by other factors. Our study shows how the niche can be quantified and used to predict field distributions successfully.
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
1. Disease epizootics can significantly influence host population dynamics and the structure and functioning of ecological communities. Sarcoptic mange Sarcoptes scabiei has dramatically reduced red fox populations Vulpes vulpes in several countries, including Britain, although impacts on demographic processes are poorly understood. We review the literature on the impact of mange on red fox populations, assess its current distribution in Britain through a questionnaire survey and present new data on resultant demographic changes in foxes in Bristol, UK. 2. A mange epizootic in Sweden spread across the entire country in < 10 years resulting in a decline in fox density of up to 95%; density remained lowered for 15–20 years. In Spain, mange has been enzootic for > 75 years and is widely distributed; mange presence was negatively correlated with habitat quality. 3. Localized outbreaks have occurred sporadically in Britain during the last 100 years. The most recent large-scale outbreak arose in the 1990s, although mange has been present in south London and surrounding environs since the 1940s. The questionnaire survey indicated that mange was broadly distributed across Britain, but areas of perceived high prevalence (> 50% affected) were mainly in central and southern England. Habitat type did not significantly affect the presence/absence of mange or perceived prevalence rates. Subjective assessments suggested that populations take 15–20 years to recover. 4. Mange appeared in Bristol's foxes in 1994. During the epizootic phase (1994–95), mange spread through the city at a rate of 0.6–0.9 km/month, with a rise in infection in domestic dogs Canis familiaris c. 1–2 months later. Juvenile and adult fox mortality increased and the proportion of females that reproduced declined but litter size was unaffected. Population density declined by > 95%. 5. In the enzootic phase (1996–present), mange was the most significant mortality factor. Juvenile mortality was significantly higher than in the pre-mange period, and the number of juveniles classified as dispersers declined. Mange infection reduced the reproductive potential of males and females: females with advanced mange did not breed; severely infected males failed to undergo spermatogenesis. In 2004, Bristol fox population density was only 15% of that in 1994.
Resumo:
Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.
Resumo:
We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.
Resumo:
This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.
Resumo:
Very few studies have analyzed the dependence of population growth rate on population density, and even fewer have considered interaction effects of density and other stresses, such as exposure to toxic chemicals. Yet without such studies we cannot know whether chemicals harmful at low density have effects on carrying capacity or, conversely, whether chemicals reducing carrying capacity are also harmful at low density, impeding a population's capacity to recover from disturbance. This study examines the combined effects of population density and a toxicant (fluoranthene) on population growth rate (pgr) and carrying capacity using the deposit-feeding polychaete Capitella sp. I as a test organism. Populations were initiated with a stable age distribution, and population density and age/size distribution were followed during a period of 28 wk. Fluoranthene (FLU), population density, and their interaction influenced population growth rate. Population growth rate declined linearly with the logarithm of population biomass, but the slope of the relationship was steeper for the control populations than for populations exposed to 50 mug FLU/(g sediment dry mass). Populations exposed to 150 mug FLU/(g sediment dry mass) went extinct after 8 wk of exposure. Despite concerns that toxicant effects would be exacerbated at high density, we found the reverse to be the case, and effects of fluoranthene on population growth rate were much reduced in the region of carrying capacity. Fluoranthene did. reduce carrying capacity by 46%, and this could haven important implications for interacting species and/or sediment biogeochemical processes.