617 resultados para polymer optical fibre
Resumo:
A study is presented of the effects of temperature non-uniformity in a distributed temperature sensor based on the temperature dependence of Brillouin gain in an optical fibre. The form of the Brillouin gain profile for a given temperature distribution is measured and successfully modelled.
Resumo:
This thesis presents experimental investigation of different effects/techniques that can be used to upgrade legacy WDM communication systems. The main issue in upgrading legacy systems is that the fundamental setup, including components settings such as EDFA gains, does not need to be altered thus the improvement must be carried out at the network terminal. A general introduction to optical fibre communications is given at the beginning, including optical communication components and system impairments. Experimental techniques for performing laboratory optical transmission experiments are presented before the experimental work of this thesis. These techniques include optical transmitter and receiver designs as well as the design and operation of the recirculating loop. The main experimental work includes three different studies. The first study involves a development of line monitoring equipment that can be reliably used to monitor the performance of optically amplified long-haul undersea systems. This equipment can provide instant finding of the fault locations along the legacy communication link which in tum enables rapid repair execution to be performed hence upgrading the legacy system. The second study investigates the effect of changing the number of transmitted 1s and Os on the performance of WDM system. This effect can, in reality, be seen in some coding systems, e.g. forward-error correction (FEC) technique, where the proportion of the 1s and Os are changed at the transmitter by adding extra bits to the original bit sequence. The final study presents transmission results after all-optical format conversion from NRZ to CSRZ and from RZ to CSRZ using semiconductor optical amplifier in nonlinear optical loop mirror (SOA-NOLM). This study is mainly based on the fact that the use of all-optical processing, including format conversion, has become attractive for the future data networks that are proposed to be all-optical. The feasibility of the SOA-NOLM device for converting single and WDM signals is described. The optical conversion bandwidth and its limitations for WDM conversion are also investigated. All studies of this thesis employ 10Gbit/s single or WDM signals being transmitted over dispersion managed fibre span in the recirculating loop. The fibre span is composed of single-mode fibres (SMF) whose losses and dispersion are compensated using erbium-doped fibre amplifiers (EDFAs) and dispersion compensating fibres (DCFs), respectively. Different configurations of the fibre span are presented in different parts.
Resumo:
We demonstrate a high sensitivity biosensor by fine tailoring mode dispersion and sensitivity of dual-peak LPGs using light-cladding-etching method. The etched device has been used to detect concentration of Hemoglobin protein in sugar solution, showing a sensitivity as high as 20nm/1%.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.
Resumo:
Long period gratings written into a standard optical fibre were modified by a femtosecond laser, which produced an asymmetric change to the cladding's refractive index resulting in a directional bend sensor.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
Some critical aspects of a new kind of on-line measurement technique for micro and nanoscale surface measurements are described. This attempts to use spatial light-wave scanning to replace mechanical stylus scanning, and an optical fibre interferometer to replace optically bulky interferometers for measuring the surfaces. The basic principle is based on measuring the phase shift of a reflected optical signal. Wavelength-division-multiplexing and fibre Bragg grating techniques are used to carry out wavelength-to-field transformation and phase-to-depth detection, allowing a large dynamic measurement ratio (range/resolution) and high signal-to-noise ratio with remote access. In effect the paper consists of two parts: multiplexed fibre interferometry and remote on-machine surface detection sensor (an optical dispersive probe). This paper aims to investigate the metrology properties of a multiplexed fibre interferometer and to verify its feasibility by both theoretical and experimental studies. Two types of optical probes, using a dispersive prism and a blazed grating, respectively, are introduced to realize wavelength-to-spatial scanning.
Resumo:
Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.
Resumo:
A study is presented of the effects of temperature non-uniformity in a distributed temperature sensor based on the temperature dependence of Brillouin gain in an optical fibre. The form of the Brillouin gain profile for a given temperature distribution is measured and successfully modelled.
Resumo:
A long period grating (LPG) written in a standard optical fibre was modified by using a femtosecond laser to induce an asymmetric change in the cladding's refractive index. This device produced blue and red wavelength shifts depending on the orientation of applied curvature, with maximum sensitivities of -1.6 nm m and +3.8 nm m, suggesting that this type of LPG may be useful as a shape sensor.
Resumo:
We report experimental findings for tailoring the temperature and strain coefficients of Type I and Type IA fibre Bragg gratings by influencing the photosensitivity presensitization of the host optical fibre. It is shown that by controlling the level of hydrogen saturation, via hot and cold hydrogenation, it is possible to produce gratings with lower thermal coefficients. Furthermore, there is a larger difference between the Type I and Type IA thermal coefficients and a significant improvement in the matrix condition number, which impacts the ability to recover accurate temperature and strain data using the Type 1-1A dual grating sensor. © 2006 IOP Publishing Ltd.
Resumo:
In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility since it allows complex three dimensional structures to be inscribed and then etched with hydrofluoric acid. Four in-fiber microchannel designs were experimentally investigated using this technique. Device characteristics were evaluated through monitoring the spectral change while inserting index matching oils into each microchannel - a R.I. sensitivity up to 1.55 dB/RIU was achieved. Furthermore, a simple Fabry-Pérot based refractometer with a R.I. sensitivity of 2.75 nm/RIU was also demonstrated. © 2014 SPIE.