996 resultados para polarization direction
Resumo:
Recording with both parallel and orthogonal linearly polarized lights, polarization holographic storage in genetic mutant BR-D96N film is reported with both transmission type geometry and reflection type geometry. Polarization properties of diffraction light and scattering light are discussed for two different cases, parallel polarization recording and orthogonal polarization recording. It shows that, compared with recording with parallel polarization lights, orthogonal polarization holography can separate the diffraction light from the scattering noise, therefore improving the signal-to-noise ratio. It also shows that, compared with reconstruction with reference light, reconstruction with phase conjugated wave of the reference light can improve the signal-to-noise ratio of the reconstructed diffraction image, and also the wave-front aberration of the object light introduced by irregular phase object in the optical pass-way can also be corrected effectively, which ensures that the reconstructed diffraction image has a better fidelity. The preliminary angle-multiplexed volume holographic storage multiplexed by transmission type geometry and reflection type geometry is demonstrated in the BR-D96N film. Experiment shows that there is no cross-talk between the two pages of images except for some scattering noises.
Resumo:
In this paper, polarization properties and propagation characteristics of polymer photonic crystal fibres with elliptical core and non-hexagonal symmetry structure are investigated by using the full vectorial plane wave method. The results how that the birefringence of the fibreis induced by asymmetries of both the cladding and the core. Moreover, by adjusting the non-symmetrical ratio factor of cladding eta from 0.4 to 1 in step 0.1, we find the optimized design parameters f the fibre with high birefringence and limited polarization mode dispersion, operating in a single mode regime at an appropriate wavelength range. The range of wavelength approaches the visible and near-infrared which is consistent with the communication windows of polymer optical fibres.
Resumo:
This letter presents the effective design of a tunable 80 Gbit/s wavelength converter with a simple configuration consisting of a single semiconductor optical amplifier (SOA) and an optical bandpass filter (OBPF). Based on both cross-gain and cross-phase modulation in SOA, the polarity-preserved, ultrafast wavelength conversion is achieved by appropriately filtering the blue-chirped spectral component of a probe light. Moreover, the experiments are carried out to investigate into the wavelength tunability and the maximum tuning range of the designed wavelength converter. Our results show that a wide wavelength conversion range of nearly 35 nm is achieved with 21-nm downconversion and 14-nm upconversion, which is substantially limited by the operation wavelength ranges of a tunable OBPF and a tunable continuous-wave laser in our experiment. We also exploited the dynamics characteristics of the wavelength converter with variable input powers and different injection current of SOA. (C) 2008 Wiley Periodicals, Inc.
Resumo:
When a grating is recorded in a bacteriorhodopsin film by two linear parallel polarized beams together with anauxiliary violet light, the diffraction efficiency has a dependence on the polarization orientation of the violet light as well as its intensity. A method for calculating the diffraction efficiency of gratings in bacteriorhodopsin is proposed based on the two-state photochromic model, considering the saturation effect and the polarization status of all the involved lights. It is found that the polarization orientation of the violet light produces an approximate-cosine and an approximate-sine modulation on the steady-state diffraction efficiency separately at low and high intensities, respectively. The parallel polarized violet light can improve the steady-state diffraction efficiency to a larger degree than the perpendicularly polarized violet light when both are at their optimal intensities. The optimal intensity for the parallel polarized violet light is lower than that of the perpendicular polarized one. Thus, the improvement of the steady-state diffraction efficiency is less sensitive to the intensity of perpendicular polarized violet light than to that of parallel polarized violet light. (C) 2008 Optical Society of America.
Resumo:
Photoinduced anisotropy in bacteriorhodopsin (BR) film is based on photoanisotropic selective bleaching of BR molecules under linearly polarized excitation light. It is modulated by the polarization orientation of the linearly polarized light. The anisotropic information recorded in the BR film is read by a circularly polarized light, which is in turn converted into an elliptical polarized light by the BR film. The rotation angle and the ellipticity of the elliptical polarized light are dependent on the polarization orientation of the linearly polarized excitation light. A phase-shifting interferometer based on the photoinduced anisotropy of BR film is presented theoretically and experimentally. Phase shift is controlled by the polarization orientation of the external excitation light, thus, the phase shift can be controlled without moving parts inside the interferometer, which contributes to the mechanical stability of the system.
Resumo:
Anisotropic gratings are recorded on bacteriorhodopsin films by two parallelly polarized beams, and the effect of the polarization orientation of the reconstructing beam on the diffraction efficiency kinetics is studied. A theoretical model for the diffraction efficiency kinetics of the anisotropic grating is developed by combining Jones-matrix and photochromic two-state theory. It is found that the polarization azimuth of the reconstructing beam produces a cosine modulation on the kinetics of the diffraction efficiency, being positive at the peak efficiency and negative for steady state. By adding auxiliary violet light during grating formation, the saturation of the grating can be restrained. As a result, the negative cosine modulation for the steady-state diffraction efficiency changes to a positive one. In addition, the steady-state diffraction efficiency is increased appreciably for all reconstructing polarization orientations. (c) 2008 Optical Society of America.
Resumo:
A new unsymmetrical photochromic diarylethene 1a is synthesized, and the photochromic properties of it are also investigated. The compound exhibits good photochromism with UV/ visible light irradiation. Compound 1a in polymethyl methacrylate ( PMMA ) film changes color upon 313- nm light irradiation from colorless to blue, in which the absorption maximum is observed at 587 nm. Photon- mode polarization multiplexing holographic optical recording is performed successfully using this compound as a recording medium. In the diarylethene 1b/ PMMA film, polarization multiplexing hologram recording and retrieval, and a combination with the angular multiplexing scheme, are demonstrated systematically. The results indicate that recording capacity can be significantly improved with the combined method of polarization and angular multiplexing holographic recording. (C) 2008 Society of Photo- Optical Instrumentation Engineers.
Resumo:
The mechanism of beam splitting and principle of wide-field-of-view compensation of modified Savart polariscope in the wide-field-of-view polarization interference imaging spectrometer (WPIIS) are analyzed and discussed. Formulas for the lateral displacement and optical path difference (OPD) produced by the modified Savart polariscope are derived by ray-tracing method. The theoretical and practical guidance is thereby provided for the study, design, modulation, experiment and engineering of the polarization interference imaging spectrometers and other birefringent Fourier-transform spectrometers based on Savart polariscopes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of the orientations of both polarizer and analyzer on modulation depth of spatially distributed interferograms for static polarization interference imaging spectrometer (SPIIS) is analyzed. A generally, theoretical relationship to determine the modulation depth of a SPIIS is derived. The special cases of maximum modulation depth (V = 1) and the minimum modulation depth (V = 0) are examined. Our results will provide a theoretical and practical guide for studying, developing and engineering polarization interference imaging spectrometers. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the design of an interference imaging spectrometer. A static Polarization Imaging Spectrometer (PIS) based on a single Savart polariscope has been developed. It produces the interferogram and target's image in the spatial domain which are recorded by using a two-dimensional (2D) CCD detector. Imaging lens localizes the interference fringes and target's image coincident with the plane of detector, thereby facilitating an extremely compact design. The spectrum of the input light is reconstructed through the Fourier-transform of the interferogram. The total optics is as small as 20 x 6 cm phi in size and the spectral resolution of the prototype system is 97.66 cm(-1) between 25,000 and 10, 000 cm(-1). The polarization interference imaging device has advantages of ultra-compact size, wide field of view, high throughput and without any moving parts. (C) 2002 Published by Elsevier Science B.V.
Resumo:
This paper discusses a rigorous treatment of the refractive scintillation of pulsar PSR B0833-45 caused by a two-component interstellar scattering medium. It is assumed that the interstellar scattering medium is composed of a thin screen ISM and an extended interstellar medium. We consider that the scattering of the thin screen concentrates in a thin layer presented by a delta function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with that of the Vela pulsar observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation of the Vela pulsar than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight. The logarithmic slope of the structure function is sensitive to thin screen location and is relatively insensitive to the scattering strength of the thin screen medium. Therefore, the proposed model can be applied to interpret the structure function of flux density observed in pulsar PSR B0833-45. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the Vela supernova remnant. Thus our work provides some insight into the distribution of the scattering along the line of sight to the Vela pulsar.