978 resultados para plant-growth
Resumo:
The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured). The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.
Resumo:
Phytohormones have been implicated in vascular development in various ways, but their precise function and the extent of their influence is still controversial. Recent results from experimental manipulation of developing organs and Arabidopsis developmental genetics support a role for polar auxin flow in cell axis formation within the vascular system and, interestingly, also in the embryonic establishment of the plant body axis. Vascular responses to auxin transport inhibition indicate patterns of auxin distribution during leaf development and new technologies may enable these predictions to be tested within the near future. Moreover, recently discovered Arabidopsis axialisation mutants seem to identify essential genes that relay auxin signals in vascular development. A first gene in this class, MONOPTEROS (MP) has been cloned and encodes a transcription factor capable of binding to auxin response elements in the control regions of auxin regulated genes. Molecular identification of further axialisation genes may provide access to a mechanistic understanding of plant cell axis formation.
Resumo:
Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
Biological N2 fixation is a major factor contributing to the increased competitiveness of Brazilian soybeans on the international market. However, the contribution of this process may be limited by adverse conditions to symbiotic bacteria, such as fungicide seed treatments. This study aimed to evaluate the effects of the fungicides carbendazim + thiram and carboxin + thiram on soybean nodulation, plant growth and grain yield. Two field experiments were carried out in the Cerrado region of the State of Roraima, in a soil with a low organic matter content and no soybean bradyrhizobia. In 2005, seeds were treated with fungicide carbendazim + thiram and commercial inoculants containing the Bradyrhizobium elkanii strains SEMIA 5019 and SEMIA 587 and B. japonicum strains SEMIA 5079 and SEMIA 5080. In 2006, soybean seeds were treated with the fungicides carbendazim + thiram or carboxin + thiram and inoculated separately with each one of the four strains. The plants were evaluated for number of nodules and dry weight, shoot dry weight and total N accumulated in shoots 35 days after plant emergence, while grain yield and N grain content were determined at harvest. Both fungicides reduced soybean nodulation, especially in the presence of B. elkanii strains. The fungicide carbendazim + thiram reduced nodulation by about 50 % and grain yield by more than 20 % (about 700 kg ha-1), in the treatment inoculated with of strain SEMIA 587.
Resumo:
Spot bloth caused by Bipolaris sorokiniana is an important wheat desease mainly in hot and humid regions. The aim of this study was to evaluate the response of wheat to different sources and modes of Si application, as related to the severity of wheat spot blotch and plant growth, in two Si-deficient Latosols (Oxisols). An greenhouse experiment was arranged in a 2 x 5 factorial completely randomized design, with eight replications. The treatments consisted of two soils (Yellow Latosol and Red Latosol) and five Si supply modes (no Si application; Si applied as calcium silicate and monosilicic acid to the soil; and Si applied as potassium silicate or monosilicic acid to wheat leaves). No significant differences were observed between the two soils. When Si was applied to the soil, regardless the Si source, the disease incubation period, the shoot dry matter yield and the Si content in leaves were greater. Additionally, the final spot blotch severity was lower and the area under the spot blotch disease progress curve and the leaf insertion angle in the plant were smaller. Results of Si foliar application were similar to those observed in the control plants.
Resumo:
Zeolites are hydrated crystalline aluminosilicate minerals of natural occurrence, structured in rigid third dimension net that can be used as slow release plant-nutrient source. The main objective of this study was to evaluate the effects of plant growth substrate under zeolite application, enriched with N, P and K, on dry matter yield and on nutrient contents in consecutive crops of lettuce, tomato, rice, and andropogon grass. The experiment was carried out in a greenhouse, with 3 kg pots with an inert substrate, evaluated in a randomized block design with three replications. Treatments consisted of four types of enrichment of concentrated natural zeolite: concentrated zeolite (Z) only, zeolite + KNO3 (ZNK), zeolite + K2HPO4 (ZPK) and zeolite + H3PO4 + apatite (ZP), and a control grown in substrate fertilized with a zeolite-free nutrient solution. Four levels of enriched zeolite were tested: 20, 40, 80, and 160 g/pot. Four successive crops were grown on the same substrate in each pot: lettuce, tomato, rice, and andropogon grass. Results indicated that N, P and K enriched zeolite was an adequate slow-release nutrient source for plants. The total dry matter production of above-ground biomass of four successive crops followed a descending order: ZP > ZPK > ZNK > Z.
Resumo:
It has been known for some time that different arbuscular mycorrhizal fungal (AMF) taxa confer differences in plant growth. Although genetic variation within AMF species has been given less attention, it could potentially be an ecologically important source of variation. Ongoing studies on variability in AMF genes within Glomus intraradices indicate that at least for some genes, such as the BiP gene, sequence variability can be high, even in coding regions. This suggests that genetic variation within an AMF may not be selectively neutral. This clearly needs to be investigated in more detail for other coding regions of AMF genomes. Similarly, studies on AMF population genetics indicate high genetic variation in AMF populations, and a considerable amount of variation seen in phenotypes in the population can be attributed to genetic differences among the fungi. The existence of high within-species genetic variation could have important consequences for how investigations on AMF gene expression and function are conducted. Furthermore, studies of within-species genetic variability and how it affects variation in plant growth will help to identify at what level of precision ecological studies should be conducted to identify AMF in plant roots in the field. A population genetic approach to studying AMF genetic variability can also be useful for inoculum development. By knowing the amount of genetic variability in an AMF population, the maximum and minimum numbers of spores that will contain a given amount of genetic diversity can be estimated. This could be particularly useful for developing inoculum with high adaptability to different environments.
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
Considerations on the interactions of P in the soil-plant system have a long history, but are still topical and not yet satisfactorily understood. One concern is the effect of liming before or after application of soluble sources on the crop yield and efficiency of available P under these conditions. The aim of this study was to evaluate the effect of soil acidity on availability of P from a soluble source, based on plant growth and chemical extractants. Nine soil samples were incubated with a dose of 200 mg kg-1 P in soil with different levels of previously adjusted acidity (pH H2O 4.5; 5.0; 5.5; 6.0 and 6.5) and compared to soils without P application. After 40 days of soil incubation with a P source, each treatment was limed again so that all pH values were adjusted to 6.5 and then sorghum was planted. After the first and second liming the P levels were determined by the extractants Mehlich-1, Bray-1 and Resin, and the fractionated inorganic P forms. In general, the different acidity levels did not influence the P availability measured by plant growth and P uptake at the studied P dose. For some soils however these values increased or decreased according to the initial soil pH (from 4.5 to 6.5). Plant growth, P uptake and P extractable by Mehlich-1 and Bray-1 were significantly correlated, unlike resin-extractable P, at pH values raised to 6.5. These latter correlations were however significant before the second liming. The P contents extracted by Mehlich-1 and Bray-1 were significantly correlated with each other in the entire test range of soil acidity, even after adjusting pH to 6.5, besides depending on the soil buffering capacity for P. Resin was also sensitive to the properties that express the soil buffering capacity for P, but less clearly than Mehlich-1 and Bray-1. The application of triple superphosphate tended to increase the levels of P-Al, P-Fe and P-Ca and the highest P levels extracted by Bray-1 were due to a higher occurrence of P-Al and P-Fe in the soils.
Resumo:
To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.
Resumo:
The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR), and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd) under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC) were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR). The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.
Resumo:
Soil penetration resistance (PR) is a measure of soil compaction closely related to soil structure and plant growth. However, the variability in PR hampers the statistical analyses. This study aimed to evaluate the variability of soil PR on the efficiency of parametric and nonparametric analyses in indentifying significant effects of soil compaction and to classify the coefficient of variation of PR into low, medium, high and very high. On six dates, the PR of a typical dystrophic Red Ultisol under continuous no-tillage for 16 years was measured. Three tillage and/or traffic conditions were established with the application of: (i) no chiseling or additional traffic, (ii) additional compaction, and (iii) chiseling. On each date, the nineteen PR data (measured at every 1.5 cm to a depth of 28.5 cm) were grouped in layers with different thickness. In each layer, the treatment effects were evaluated by variance (ANOVA) and Kruskal-Wallis analyses in a completely randomized design, and the coefficients of variation of all analyses were classified (low, intermediate, high and very high). The ANOVA performed better in discriminating the compaction effects, but the rejection rate of null hypothesis decreased from 100 to 80 % when the coefficient of variation increased from 15 to 26 %. The values of 15 and 26 % were the thresholds separating the low/intermediate and the high/very high coefficient variation classes of PR in this Ultisol.
Resumo:
Plant growth and development are strongly influenced by the availability of nutrients in the soil solution. Among them, phosphorus (P) is one of the most essential and most limiting macro-elements for plants. In the environment, plants are often confronted with P starvation as a result of extremely low concentrations of soluble inorganic phosphate (Pi) in the soil. To cope with these conditions, plants have developed a wide spectrum of mechanisms aimed at increasing P use efficiency. At the molecular level, recent studies have shown that several proteins carrying the SPX domain are essential for maintaining Pi homeostasis in plants. The SPX domain is found in numerous eukaryotic proteins, including several proteins from the yeast PHO regulon, involved in maintaining Pi homeostasis. In plants, proteins harboring the SPX domain are classified into four families based on the presence of additional domains in their structure, namely the SPX, SPX-EXS, SPX-MFS and SPX-RING families. In this review, we highlight the recent findings regarding the key roles of the proteins containing the SPX domain in phosphate signaling, as well as providing further research directions in order to improve our knowledge on P nutrition in plants, thus enabling the generation of plants with better P use efficiency.
Resumo:
Particle size distribution (PSD) in the soil profile is strongly related to erosion, deposition, and physical and chemical processes. Water cycling and plant growth are also affected by PSD. Material sedimented upstream of the dam constructions formed large areas of deposited farmland (DF) soils on the Chinese Loess Plateau (CLP), which has been the site of the most severe soil erosion in the world. Two DFs without tillage on the CLP were chosen to study the combined effect of erosion and check dams on PSD. Eighty-eight layers (each 10 cm thick) of filled deposited farmland (FDF) soils and 22 layers of silting deposited farmland (SDF) soils of each studied soil profile were collected and 932 soil samples were investigated using laser granulometry. The particle sizes were stratified in both DFs based on soil properties and erosion resistance. The obtained results of clay and silt fractions showed similar horizontal distribution, indicating parallel characteristics of erosion and deposition processes. Fine sand represented the largest fraction, suggesting the preferential detachment of this fraction. The most erodible range of particle sizes was 0.25-0.5 mm, followed by 0.2-0.25 mm in the studied soil profiles. The correlation between particle size and soil water contents tended to increase with increasing water contents in FDF. Due to the abundant shallow groundwater, the relationship between particle size and soil water content in SDF was lost. Further studies on PSD in the DF area are needed to enhance the conservation management of soil and water resources in this region.