896 resultados para photovoltaic
Resumo:
This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.
Resumo:
Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer.
Resumo:
This report contains a suggestion for a simple monitoring and evaluation guideline for PV-diesel hybrid systems. It offers system users a way to better understand if their system is operated in a way that will make it last for a long time. It also gives suggestions on how to act if there are signs of unfavourable use or failure. The application of the guide requires little technical equipment, but daily manual measurements. For the most part, it can be managed by pen and paper, by people with no earlier experience of power systems.The guide is structured and expressed in a way that targets PV-diesel hybrid system users with no, or limited, earlier experience of power engineering. It is less detailed in terms of motivations for certain choices and limitations, but rich in details concerning calculations, evaluation procedures and maintenance routines. A more scientific description of the guide can be found in a related journal article.
Resumo:
No Brasil, assim como em outros países que recebem abundantes quantidades de radiação solar durante todo o ano, há um grande potencial para os sistemas que usam a tecnologia fotovoltaica para promover o bombeamento de água. Entretanto, a escolha dos conjuntos de motores e bombas mais adequados para cada situação passa pela análise do desempenho dos sistemas de bombeamento. Portanto, devem ser analisadas tanto as melhores configurações de geradores fotovoltaicos destinados a operar os conjuntos formados pelos motores e bombas, quanto às eficiências das bombas e da conversão fotovoltaica. Nesse trabalho são apresentadas medidas e comparações do desempenho de dois sistemas de bombeamento diretamente acoplados a geradores fotovoltaicos. Para tanto, foi construída uma bancada destinada a realizar uma série de experimentos. Um dos sistemas usou uma bomba centrífuga acoplada a um gerador fotovoltaico formado por três módulos fotovoltaicos. O outro, utilizou uma bomba volumétrica de diafragma acoplada a um único módulo fotovoltaico. Os experimentos foram conduzidos em duas etapas distintas. A primeira foi feita com os motores acoplados a uma fonte de potência em corrente contínua e serviu para a determinação das curvas de desempenho de cada uma das bombas, das curvas dos sistemas, assim como das curvas de corrente (I) e de tensão (V) de cada um dos motores que acionavam as bombas. A segunda foi realizada com os sistemas acoplados diretamente aos geradores fotovoltaicos. A determinação da configuração dos geradores fotovoltaicos destinados a acionar os diferentes sistemas de bombeamento em análise nesse trabalho foi feita por meio da sobreposição das curvas de corrente e tensão dos motores e dos módulos fotovoltaicos. A parte experimental, estando os sistemas acoplados aos geradores, constou de medidas realizadas em intervalos de tempo de cinco segundos, para cada bomba e em várias alturas, das seguintes variáveis: temperatura ambiente, irradiância, temperatura dos módulos, corrente e tensão do motor, rotação do motor, temperatura da água, diferencial de pressão entre entrada e saída da bomba e vazão. As diversas alturas foram simuladas por meio da abertura e/ou fechamento de uma válvula de controle de vazão colocada na extremidade tubulação de descarga, operada manualmente. Os procedimentos adotados nessa dissertação permitiram caracterizar os sistemas de bombeamento propostos, assim como determinar quais os arranjos mais adequados para operar cada sistema. Verificou-se que o melhor arranjo para operar o conjunto motor e bomba centrífuga foi aquele formado por três módulos fotovoltaicos ligados em paralelo, enquanto que a melhor opção para operar o conjunto motor e bomba de diafragma foi com somente um módulo fotovoltaico. De posse dos dados medidos foi possível determinar as eficiências: instantâneas, máximas instantâneas e diárias da conversão fotovoltaica assim como dos conjuntos motores e bombas, em diferentes alturas. Relativamente à conversão fotovoltaica, verificou-se que o conjunto motor e bomba centrífuga operou com eficiência instantânea máxima de 5,74% e eficiência diária de 4,70%, enquanto que o conjunto motor e bomba volumétrica de diafragma operou com eficiência instantânea máxima de 7,66% e eficiência diária de 5,82%. Relativamente à eficiência dos conjuntos motores e bombas, verificou-se que o conjunto motor e bomba centrífuga operou com eficiência instantânea máxima de 19,19% e eficiência diária de 16,79%, enquanto que o conjunto motor e bomba volumétrica de diafragma operou com eficiência instantânea máxima de 38,88% e eficiência diária de 34,30%. Verificou-se ainda que a altura foi determinante na eficiência do conjunto motor e bomba centrífuga e pouco influenciou na eficiência do conjunto motor e bomba de diafragma. Além dessas, outras considerações sobre o comportamento dos sistemas de bombeamento ao longo de um dia também foram ser registrados, tais como: limiares de irradiância para início e final de vazão, correntes de pico ou de arranque dos motores e correntes de início de vazão ou escoamento.
Resumo:
The generation of electricity in Brazil is predominantly renewable, with internal hydraulic generation being more than 70% of its energy matrix. The electricity rationing occurred in 2001 due to lack of rain, led the country to increase the participation of alternative energy sources. This need for new sources of energy makes the regional potential to be exploited, which configures the change of generation model from centralized generation to distributed generation. Among the alternative sources of energy, the solar energy is presented as very promising for Brazil, given that most of its territory is located near to the equator line, which implies days with greater number of hours of solar radiation. The state of Rio Grande do Norte (RN) has one of the highest levels of solar irradiation of the Brazilian territory, making it eligible to receive investments for the installation of photovoltaic solar plants. This thesis will present the state-of-the-art in solar photovoltaic power generation and will examine the potential for generation of solar photovoltaic power in Brazil and RN, based on solarimetrics measurements conducted by various institutions and also measurements performed in Natal, the state capital
Resumo:
The scarcity of natural resources and the search for alternative energy sources promote a rapid change in the energy world. Among the renewable energy sources, solar energy is the most promising, presenting technology of greatest growth rate nowadays. Researchers around the world are seeking ways to facilitate their progress, developing technologies with higher efficiency and lower cost. As a contribution to global progress, this master thesis proposes the development of a strategy of maximum power tracking based on perturbation and observation method for photovoltaic systems. The proposed control strategy is based on active power balance of the system, with a reduced number of sensors. It also allows the PV system to act as a regulator of the power quality at the point of commom coupling (PCC), compensating the harmonic distortion and power factor of the current netw
Resumo:
This work purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system for oil pumping. The developed model is estimated the implantation cost of system through Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. The considered model not only can be applied to the oil pumping, but also for any other purposes of electric energy generation for conversion of solar, wind or solar-wind energy, that demand short powers. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F by Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, toverify if there is difference in the system cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4m/s and 6 m/s in wind of 3 m, 4m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4m. The mathematical model and the computational program may be used to others applications which require electrical between 2.250 W and 3.750 W. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar system through considered mathematical model
Resumo:
Low voltage solar panels increase the reliability of solar panels due to reduction of in series associations the configurations of photovoltaic cells. The low voltage generation requires DCDC converters devices with high efficiency, enabling raise and regulate the output voltage. This study analyzes the performance of a photovoltaic panel of Solarex, MSX model 77, configured to generate an open circuit voltage of 10.5 V, with load voltage of 8.5 V, with short circuit current of 9 A and a power of 77 W. The solar panel was assembled in the isolated photovoltaic system configuration, with and without energy storage as an interface with a DCDC converter, Booster topology. The converter was designed and fabricated using SMD (Surface Mounted Devices) technology IC (integrated circuit) that regulates its output voltage at 14.2 V, with an efficiency of 87% and providing the load a maximum power of 20.88 W. The system was installed and instrumented for measurement and acquisition of the following data: luminosities, average global radiation (data of INPE Instituto Nacional de Pesquisas Espaciais), solar panel and environment temperatures, solar panel and DC-DC converter output voltages, panel, inverter, and battery charge output currents. The photovoltaic system was initially tested in the laboratory (simulating its functioning in ideal conditions of operation) and then subjected to testing in real field conditions. The panel inclination angle was set at 5.5°, consistent with the latitude of Natal city. Factors such as climatic conditions (simultaneous variations of temperature, solar luminosities and ra diation on the panel), values of load resistance, lower limit of the maximum power required by the load (20.88 W) were predominant factors that panel does not operate with energy efficiency levels greater than 5 to 6%. The average converter efficiency designed in the field test reached 95%
Resumo:
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.
Resumo:
Among the researches on preparation and test of nanostructured materials, titanium dioxide and zinc oxide have been the most frequent studied oxides. In order to extend their properties, composites have been prepared using three different methods: Polyol Method, Sol-gel Process and a combination of the two processes (hybrid process). Recent research showed best properties in composite materials than in pure oxides. In this work is presented the preparation and the structural characterization of ZnO-TiO2 composite nanostructures to be tested for their performance in electrocatalysis and in further trial on photovoltaic cells.
Resumo:
Electrical energy from photovoltaic panels (PV) has became an increasing viable alternative because of the great concern for environmental preservation and the possibility of the reduction of the conventional fuels, and this natural energy source is free, abundant and clean. In addition, Brazil is a privileged country because of the high levels of irradiation throughout its territory all over the year. Thus the exploitation of the energy from PV is one of the best alternatives to overcome the supply electrical energy issues. However, nowadays the energy conversion efficiency is low and the initial costs are high for these energy systems. Therefore, in order to increase the efficiency of these systems the extraction of the maximum power point (MPP) from PV is extremely necessary, and it is done using the maximum power point tracking (MPPT) techniques. The MPP of the PV varies non linearly with the environmental conditions and several MPPT techniques are available in literature, and this paper presents a careful comparison among the most usual techniques, doing meaningful comparisons with respect to the amount of energy extracted, PV voltage ripple, dynamic response and use of sensors, considering that the models are implemented via MatLab/Simulink®. © 2010 IEEE.