948 resultados para peripheral retina


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our research aims to analyze the causal relationships in the behavior of public debt issued by peripheral member countries of the European Economic and Monetary Union -EMU-, with special emphasis on the recent episodes of crisis triggered in the eurozone sovereign debt markets since 2009. With this goal in mind, we make use of a database of daily frequency of yields on 10-year government bonds issued by five EMU countries -Greece, Ireland, Italy, Portugal and Spain-, covering the entire history of the EMU from its inception on 1 January 1999 until 31 December 2010. In the first step, we explore the pair-wise causal relationship between yields, both for the whole sample and for changing subsamples of the data, in order to capture the possible time-varying causal relationship. This approach allows us to detect episodes of contagion between yields on bonds issued by different countries. In the second step, we study the determinants of these contagion episodes, analyzing the role played by different factors, paying special attention to instruments that capture the total national debt -domestic and foreign- in each country.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is characterized by impaired T-, B- and NK-cell function. Affected children, in addition to early onset of infections, manifest non-immunologic symptoms including pulmonary dysfunction likely attributable to elevated systemic adenosine levels. Lung disease assessment has primarily employed repetitive radiography and effort-dependent functional studies. Through impulse oscillometry (IOS), which is effort-independent, we prospectively obtained objective measures of lung dysfunction in 10 children with ADA-SCID. These results support the use of IOS in the identification and monitoring of lung function abnormalities in children with primary immunodeficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report two unrelated patients with a multisystem disease involving liver, eye, immune system, connective tissue, and bone, caused by biallelic mutations in the neuroblastoma amplified sequence (NBAS) gene. Both presented as infants with recurrent episodes triggered by fever with vomiting, dehydration, and elevated transaminases. They had frequent infections, hypogammaglobulinemia, reduced natural killer cells, and the Pelger-Huët anomaly of their granulocytes. Their facial features were similar with a pointed chin and proptosis; loose skin and reduced subcutaneous fat gave them a progeroid appearance. Skeletal features included short stature, slender bones, epiphyseal dysplasia with multiple phalangeal pseudo-epiphyses, and small C1-C2 vertebrae causing cervical instability and myelopathy. Retinal dystrophy and optic atrophy were present in one patient. NBAS is a component of the synthaxin-18 complex and is involved in nonsense-mediated mRNA decay control. Putative loss-of-function mutations in NBAS are already known to cause disease in humans. A specific founder mutation has been associated with short stature, optic nerve atrophy and Pelger-Huët anomaly of granulocytes (SOPH) in the Siberian Yakut population. A more recent report associates NBAS mutations with recurrent acute liver failure in infancy in a group of patients of European descent. Our observations indicate that the phenotypic spectrum of NBAS deficiency is wider than previously known and includes skeletal, hepatic, metabolic, and immunologic aspects. Early recognition of the skeletal phenotype is important for preventive management of cervical instability. © 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Long-lasting devices releasing steroids have been approved recently for macular edema of various origins. Identification of the retina as a novel mineralo-sensitive tissue also raises new therapeutic options. RECENT FINDINGS: Recently, the over activation of the mineralocorticoid receptor (MR) pathway has been shown to cause fluid accumulation in the retina, choroidal vasodilation, and to promote retinal neovascularization in hypoxic conditions. These findings indicate that MR antagonists could have beneficial effects in the treatment of retinal diseases. Central serous chorioretinopathy is a retinal disease associated with choroidal vasodilation and subretinal fluid that affects mostly men with type A personality and occurrence has been associated with steroid intake. In several independent studies, MR antagonists have shown beneficial effects, significantly reducing subretinal fluid in eyes of chronic central serous chorioretinopathy patients. SUMMARY: The role of MR in retinal disorder is emerging and the potential association with psychological traits is considered. The place of MR antagonists for retinal diseases treatment is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Chronic, exaggerated, glycemic excursions could lead to cardiovascular diseases, nephropathy, neuropathy and retinopathy. We recently showed that hypoglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression was modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we identify by gene set enrichment analysis, three important pathways, including lysosomal function, GSH metabolism and apoptotic pathways. Then we tested the effect of recurrent hypoglycemia (three successive 4h periods of hypoglycemia spaced by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevented GSH decrease and retinal cell death, or adapted the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining "normal" GSH level, as well as a strict glycemic control, represents a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Most peripheral T-cell lymphoma (PTCL) patients have a poor outcome and the identification of prognostic factors at diagnosis is needed. PATIENTS AND METHODS: The prognostic impact of total metabolic tumor volume (TMTV0), measured on baseline [(18)F]2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography, was evaluated in a retrospective study including 108 PTCL patients (27 PTCL not otherwise specified, 43 angioimmunoblastic T-cell lymphomas and 38 anaplastic large-cell lymphomas). All received anthracycline-based chemotherapy. TMTV0 was computed with the 41% maximum standardized uptake value threshold method and an optimal cut-off point for binary outcomes was determined and compared with others prognostic factors. RESULTS: With a median follow-up of 23 months, 2-year progression-free survival (PFS) was 49% and 2-year overall survival (OS) was 67%. High TMTV0 was significantly associated with a worse prognosis. At 2 years, PFS was 26% in patients with a high TMTV0 (>230 cm(3), n = 53) versus 71% for those with a low TMTV0, [P < 0.0001, hazard ratio (HR) = 4], whereas OS was 50% versus 80%, respectively, (P = 0.0005, HR = 3.1). In multivariate analysis, TMTV0 was the only significant independent parameter for both PFS and OS. TMTV0, combined with PIT, discriminated even better than TMTV0 alone, patients with an adverse outcome (TMTV0 >230 cm(3) and PIT >1, n = 33,) from those with good prognosis (TMTV0 ≤230 cm(3) and PIT ≤1, n = 40): 19% versus 73% 2-year PFS (P < 0.0001) and 43% versus 81% 2-year OS, respectively (P = 0.0002). Thirty-one patients (other TMTV0-PIT combinations) had an intermediate outcome, 50% 2-year PFS and 68% 2-year OS. CONCLUSION: TMTV0 appears as an independent predictor of PTCL outcome. Combined with PIT, it could identify different risk categories at diagnosis and warrants further validation as a prognostic marker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease risk that has been discovered to date. However, the mechanisms by which TCF7L2 contributes to the disease remain largely elusive. In addition, epigenetic mechanisms, such as changes in DNA methylation patterns, might have a role in the pathophysiology of T2D. This study aimed to investigate the differences in terms of DNA methylation profile of TCF7L2 promoter gene between type 2 diabetic patients and age- and Body Mass Index (BMI)- matched controls. We included 93 type 2 diabetic patients that were recently diagnosed for T2D and exclusively on diet (without any pharmacological treatment). DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Type 2 diabetic patients were more insulin resistant than their matched controls (mean HOMA IR 2.6 vs 1.8 in controls, P<0.001) and had a poorer beta-cell function (mean HOMA B 75.7 vs. 113.6 in controls, P<0.001). Results showed that 59% of the CpGs analyzed in TCF7L2 promoter had significant differences between type 2 diabetic patients and matched controls. In addition, fasting glucose, HOMA-B, HOMA-IR, total cholesterol and LDL-cholesterol correlated with methylation in specific CpG sites of TCF7L2 promoter. After adjustment by age, BMI, gender, physical inactivity, waist circumference, smoking status and diabetes status uniquely fasting glucose, total cholesterol and LDL-cholesterol remained significant. Taken together, newly diagnosed, drug-naïve type 2 diabetic patients display specific epigenetic changes at the TCF7L2 promoter as compared to age- and BMI-matched controls. Methylation in TCF7L2 promoter is further correlated with fasting glucose in peripheral blood DNA, which sheds new light on the role of epigenetic regulation of TCF7L2 in T2D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.