932 resultados para neutron powder diffraction
Resumo:
Some new compounds of cinnamic acid with lighter trivalent lanthanides were prepared in the solid state. The compounds have general formula ML3·H2O, where L is cinnamate (C6H5-CH=CH-COO-) and M is La, Ce, Pr, Nd or Sm. Thermogravimetry, derivative thermogravimetry, differential scanning calorimetry, infrared absorption spectra and X-ray diffraction powder patterns were used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
The crystal structure of the Aurivillius compound Bi2BaTa2O9 prepared via the chemical route was determined by direct methods using EXPO97, and refined using the Rietveld method with conventional X-ray diffraction data. The structure was found to be tetragonal (space group I4/mmm, number 139) and Z = 2, isomorphic of the Bi2BaNb2O9 reported by Blake and co-workers in the literature (1997). Two refinements were performed using the two asymmetry functions of DBWS-9807 (release 20/May/99). The unit cell for each case are: a = 3.932 22(6) Å, c = 25.5053(6) Å (RA) and a = 3.93250(7) Å, c = 25.5069(6) Å (RCF). The differences for atom positions, interatomic distances and angles are in the range of one standard deviation. Final agreements factors are: Rwp = 7.97%, S = 1.84, RBragg = 4.28%(RA), Rwp = 7.98%, S = 1.84, RBragg = 4.30% (RCF). The occupancies of Ba and Bi in site 2b were refined but constrained to have their summation equal to 1.00. The same constraints were applied to the Ba and Bi of the 4e site. The results show that on site 2b there are 70% of Ba and 30% of Bi and on the site 4e there are 82% of Bi and 18% of Ba. The charge equilibrium is maintained for one standard deviation of the site occupancies. © 2000 International Centre for Diffraction Data.
Resumo:
Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.
Resumo:
A nanoparticles of La1-xSrxMnO3 were synthesized using homogenous coprecipitation method. The precipate was washed with water and dried at 80 °C. The samples were characterized by X-ray powder diffraction, transmission electron microscopy (TEM) and electrical resistivity as a function of temperature. The TEM results show that the particle size is in the nanometer scale.
Resumo:
Thin films of lithium niobate were deposited on the Pt/Ti/SiO2 (111) substrates by the polymeric precursor method (Pechini process). Annealing in static air and oxygen atmosphere was performed at 500°C for 3 hours. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dielectric constant, dissipation factor and resistance were measured in frequency region from 10 Hz to 10 MHz. Electrical characterizations of the films pointed to ferroelectricity via hysteresis loop. The influence of oxygen atmosphere on crystallization and properties of LiNbO3 thin films is discussed.
Resumo:
Solid-state M-4-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
The thermal behavior of the pyrazolyl complexes [NiCl2(HPz) 4] (1), [Ni(NCS)2(HPz)4] (2), [NiCl 2(HdmPz)4]·2H2O (3) and [Ni(NCS) 2(HdmPz)4]·2H2O (4) (HPz=pyrazole, HdmPz=3,5-dimethylpyrazole) has been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The TG data indicated that the thermal stability of [NiX2(HL)4] (X=Cl, NCS) compounds varies depending on the pyrazolyl ligand in the following order HL=HPz>HdmPz. From the thermal decomposition of 3 and 4 it was possible to isolate the intermediate compounds [Ni(μ-Cl)2(HdmPz)2] (3a) and [Ni(μ-1,3-NCS) 2(HdmPz)2] (4a), respectively. The final products of the thermal decompositions of 1-4 were identified as NiO by X-ray powder diffraction. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
Thermal behavior of pyrazolyl complexes [PdCl2(HPz)2] (1), [PdCl2(HdmPz)2] (2), [Pd(SCN)2(HPz) 2] (3), [Pd(SCN)2(HdmPz)2] (4), [Pd(N 3)2(HdmPz)2] (5), [Pd(PzNHCO)2] (6) and [Pd(dmPzNHCO)2] (7) (HPz=pyrazole, HdmPz=3,5-dimethylpyrazole) has been studied by TG and DTA. In general, the thermal stability of [PdX 2(HL)2] (HL=HPz, HdmPz) compounds varies in the following order: HdmPz>HPz as well, according to the trends X=Cl ->SOT->NNN-. Except for 5, the [PdX 2(HL)2] complexes showed higher thermal stability than the 6 and 7 chelates. No stable intermediates were isolated during the thermal decompositions because of the overlapping degradation processes. The final products of the thermal decompositions were identified as metallic palladium by X-ray powder diffraction. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
The present paper describes the one-pot procedure for the formation of self-assembled thin films of two silanes on the model oxidized silicon wafer, SiO2/Si. SiO2/Si is a model system for other surfaces, such as glass, quartz, aerosol, and silica gel. MALDI-TOF MS with and without a matrix, XPS, and AFM have confirmed the formation of self-assembled thin films of both 3-imidazolylpropyltrimethoxysilane (3-IPTS) and 4-(N- propyltriethoxysilane-imino)pyridine (4-PTSIP) on the SiO2/Si surface after 30 min. Longer adsorption times lead to the deposition of nonreacted 3-IPTS precursors and the formation of agglomerates on the 3-IPTS monolayer. The formation of 4-PTSIP self-assembled layers on SiO2/Si is also demonstrated. The present results for the flat SiO2/Si surface can lead to a better understanding of the formation of a stationary phase for affinity chromatography as well as transition-metal-supported catalysts on silica and their relationship with surface roughness and ordering. The 3-IPTS and 4-PTSIP modified SiO2/Si wafers can also be envisaged as possible built-on-silicon thin-layer chromatography (TLC) extraction devices for metal determination or N-heterocycle analytes, such as histidine and histamine, with on-spot MALDI-TOF MS detection. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Different thermal treatments for the synthesis of BaTiO3 powder obtained through the Pechini method were studied. The synthesis of BaTiO3 starts at 150 °C by the thermal dehydration of organic precursors. The usual inevitable formation of barium carbonate during the thermal decomposition of the precursor could be retarded at lower calcination temperatures and optimized heating rates. The organic precursors were treated at temperatures between 200 and 400 °C. Then, the samples were calcined at 700 and 800 °C for 4 and 2 h, respectively. The resulting ceramic powders were characterized by gravimetric and differential thermal analyses, X-ray powder diffraction and infrared spectroscopy. It was found that depending on the heating rate and final temperature of the thermal treatment, high amounts of BaCO3 and TiO2 could be present due to the high concentration of organics in the final calcination step. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Deposits formed on the surface of. paper were analysed in order to identify the sources of the defects, as well as to solve the problems associated with performance and adjustments at the wet end of the paper forming process. Standard paper samples containing deposits were collected and analysed by comparing the microstructure and composition of the deposit with paper regions adjacent to it. Optical microscopy (OM). energy dispersive X-ray microanalysis (EDX) X-ray powder diffraction (XRD). thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were the techniques used in this study. The results obtained from the EDX, XRD. and TG techniques allowed concluding that the calcium carbonate content in the farm of calcite is 1.6 times higher in the formed deposit them the quantity expected in the standard paper composition. The paper sample microstructure revealed by the SEM images indicates the presence of irregular spherical aggregates up to 20μm in diameter in the deposit region. containing larger amount of calcium carbonate as well as in the regions adjacent to the deposit. These spherical aggregates seem to be absorbed and integrated into the pulp fibres and present characteristics similar to those of partially cooked cationic starch. The analysed deposits are characterised by a dense and thick substance, forming a plate with highly adhesive property. This adhesive substance has a characteristic similar to glue with a large amount of organic matter due to the high weight loss shown by the TG curve. The results are consistent with the interaction ofparticles of negatively charged calcium carbonate and cationic starch, forming sterically stabilized deposits, which firmly adhere to the paper microstructure.
Resumo:
Sr0.5Ba0.5Bi2Nb2O 9 ceramic was prepared by a conventional solid state reaction method and studied using X-ray powder diffraction and dielectric measurements. At room temperature, an orthorhombic structure was confirmed and their parameters were obtained using the Rietveld method. Dielectric properties were studied in a broad range of temperatures and frequencies. Typical relaxor behaviour was observed with strong dispersion of the complex relative dielectric permittivity. The temperature of the maximum dielectric constant Tm decreases with increasing frequency, and shifts towards higher temperature side. The activation energy Ea≈0·194±0·03 eV and freezing temperature Ta≈371±2 K values were found using the Vogel-Fulcher relationship. Conduction process in the material may be due to the hopping of charge carriers at low temperatures and small polarons and/or singly ionised oxygen vacancies at higher temperatures. © 2010 Maney Publishing.
Resumo:
In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y 2O 3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders. © (2010) Trans Tech Publications.
Resumo:
We report on superconductivity in CeFeAs 1-xP xO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of T SC≅T C≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to TNFe≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with TNFe→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering. © 2012 American Physical Society.
Resumo:
In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.