925 resultados para neurocognitive deficits


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with a number of psychiatric and neuropathological conditions demonstrate problems in recognising facial expressions of emotion. Research indicating that patients with schizophrenia perform more poorly in the recognition of negative valence facial stimuli than positive valence stimuli has been interpreted as evidence of a negative emotion specific deficit. An alternate explanation rests in the psychometric properties of the stimulus materials. This model suggests that the pattern of impairment observed in schizophrenia may reflect initial discrepancies in task difficulty between stimulus categories, which are not apparent in healthy subjects because of ceiling effects. This hypothesis is tested, by examining the performance of healthy subjects in a facial emotion categorisation task with three levels of stimulus resolution. Results confirm the predictions of the model, showing that performance degrades differentially across emotion categories, with the greatest deterioration to negative valence stimuli. In the light of these results, a possible methodology for detecting emotion specific deficits in clinical samples is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disturbed sense of self has long been identified as a common experience among people suffering with schizophrenia. More recently, metacognitive deficits have been found to be a stable and independent feature of schizophrenia that contributes to disturbed self-experience and impedes recovery. Individual psychotherapy designed to target poor metacognition has been shown to promote a more coherent sense of self and enhanced recovery in people with schizophrenia. We provide a report of a 2-year individual psychotherapy with a patient suffering with chronic schizophrenia. Progress was assessed over the course of treatment using the Metacognition Assessment Scale and the Brief Psychiatric Rating Scale. The patient experienced improved metacognitive capacity and reduced symptom severity over the course of therapy. Implications for clinical practice are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The US dollar is still considered as the main strategic deposit among the currencies of different countries of the world and the policies of the World Bank and the International Financial Organizations have been and will always be influenced by the US economy. Despite the economic crises and commercial balance deficits in the United States, dollar has maintained its high position in and its domination over foreign exchanges and foreign-currency deposits of the countries. The novelty of the present research relies on its consideration of the political properties of the governments and the geopolitical effects of these countries on the position of their monetary and foreign-currency policies and consequently, on the international financial organizations such as the International Monetary Fund and the World Bank, which can determine the future of international economy and the political relations among countries. Our research proves that the political development of the United States and its geopolitical situation have been of the effective factors on dollar growth; and unless the competitors acquire such a relative advantage, they will not be able to seriously challenge the currency of dollar and the monetary policies of the United States, at least in a short time

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The improved treatment protocols and subsequent improved survival rates amongst childhood cancer patients has shifted the focus towards the long-term consequences arising from cancer treatment. Children who have completed cancer treatment are at a greater risk of delayed development, diminished functioning, disability, compromised fundamental movement skill (FMS) attainment and long term chronic health conditions. The aim of the study was to compare FMS of childhood cancer patients with an aged matched healthy reference group. Methods Pediatric cancer patients aged 5-8 years of age (n=26; median age 6.91 years), who completed cancer treatment (<5 years) at the Sydney Children’s Hospital were assessed performing 7 key FMS; sprint, side-gallop, vertical-jump, catch, over-arm throw, kick and leap. Results were compared to the reference group (n=430; 6.56 years). Results Childhood cancer patients scored significantly lower on 3 out of 7 FMS tests when compared to the reference group. These results equated to a significantly lower overall score for FMS. Conclusion This study highlighted the significant deficits in FMS within pediatric patients having completed cancer treatment. In order to reduce the occurrence of significant FMS deficits in this population, FMS interventions maybe warranted to assist in recovery from childhood cancer, prevent late effects and improve the quality of life in survivors of childhood cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (PMA = 4. 79 × 10-8). This commonly-carried genetic variant accounted for 2. 68 % and 0. 84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative aspects of verbal fluency may be more useful in discerning the precise cause of any quantitative deficits in phonetic or category fluency, especially in the case of mild cognitive impairment (MCI), a possible intermediate stage between normal performance and Alzheimer's disease (AD). The aim of this study was to use both quantitative and qualitative (switches and clusters) methods to compare the phonetic and category verbal fluency performance of elderly adults with no cognitive impairment (n = 51), significant memory impairment (n = 16), and AD (n = 16). As expected, the AD group displayed impairments in all quantitative and qualitative measures of the two fluency tasks relative to their age- and education-matched peers. By contrast, the amnestic MCI group produced fewer animal names on the semantic fluency task than controls and showed normal performance on the phonetic fluency task. The MCI group's inferior category fluency performance was associated with a deficit in their category-switching rate rather than word cluster size. Overall, the results indicate that a semantic measure such as category fluency when used in conjunction with a test of episodic memory may increase the sensitivity for detecting preclinical AD. Future research using external cues and other measures of set shifting capacity may assist in clarifying the origin of the amnestic MCI-specific category-switching deficiency. Copyright

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Older Australian Twins Study (OATS) was recently initiated to investigate genetic and environmental factors and their associations and interactions in healthy brain ageing and ageing-related neurocognitive disorders. The study extends the classic MZ-DZ design to include one or two equivalently aged siblings for each twin pair and utilizes the rich resources of the Australian Twin Registry. The study has a number of distinguishing features including comprehensive psychiatric, neuropsychological, cardiovascular, metabolic, and neuroimaging assessments, a longitudinal design and links with a brain donor program. The study measures many behavioral and environmental factors, but in particular lifetime physical and mental activity, physical and psychological trauma, loss of parent early in life, later losses and life events, early-life socioeconomic environment, alcohol and drug use, occupational exposure, and nutrition. It also includes comprehensive cardiovascular assessment, blood biochemistry, genetics and proteomics. The socio-demographic and health data on the first 172 pairs of twins participating in this study are presented. Prevalence of mild cognitive impairment is 12.8% and of dementia 1.5% in the sample. The target sample size is 1000, with at least 400 pairs of twins aged 65-90 years. The cohort will be assessed every two years, with in-depth assessments being repeated. OATS offers an excellent opportunity for collaboration with other similar studies as well as researchers who share the same interests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To examine the concordance rates of common medical conditions and neurocognitive performance in monozygotic (MZ) and dizygotic (DZ) older twins. Methods: Twins aged ≥65 years and living in the three Eastern states of Australia were recruited through the Australian Twin Registry and underwent detailed neuropsychological and medical assessment. Results: Assessments were conducted on 113 MZ and 96 DZ twin pairs, with a mean age of 70.5 years. MZ twins were more concordant than DZ twins for hypertension and asthma. MZ twins had higher correlations than DZ twins on most neuropsychological tests, with the exception of some tests related to processing speed. The concordance rate for mild cognitive impairment or dementia was 76.2% in MZ twins and 42.9% in DZ twins, a non-significant difference. Conclusions: Except for some aspects of processing speed, most cognitive functions in older individuals show significant heritability. The heritability of neurocognitive disorders is, however, low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arcuate fasciculus (AF), a white matter tract linking temporal and inferior frontal language cortices, can be disrupted in stroke patients suffering from aphasia. Using diffusion tensor imaging (DTI) tractography it is possible to track AF connections to neural regions associated with either phonological or semantic linguistic processing. The aim of the current study is to investigate the relationship between integrity of white matter microstructure and specific linguistic deficits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We detected and mapped a dynamically spreading wave of gray matter loss in the brains of patients with Alzheimer's disease (AD). The loss pattern was visualized in four dimensions as it spread over time from temporal and limbic cortices into frontal and occipital brain regions, sparing sensorimotor cortices. The shifting deficits were asymmetric (left hemisphere > right hemisphere) and correlated with progressively declining cognitive status (p < 0.0006). Novel brain mapping methods allowed us to visualize dynamic patterns of atrophy in 52 high-resolution magnetic resonance image scans of 12 patients with AD (age 68.4 ± 1.9 years) and 14 elderly matched controls (age 71.4 ± 0.9 years) scanned longitudinally (two scans; interscan interval 2.1 ± 0.4 years). A cortical pattern matching technique encoded changes in brain shape and tissue distribution across subjects and time. Cortical atrophy occurred in a well defined sequence as the disease progressed, mirroring the sequence of neurofibrillary tangle accumulation observed in cross sections at autopsy. Advancing deficits were visualized as dynamic maps that change over time. Frontal regions, spared early in the disease, showed pervasive deficits later (< 15% loss). The maps distinguished different phases of AD and differentiated AD from normal aging. Local gray matter loss rates (5.3 ± 2.3% per year in AD v 0.9 ± 0.9% per year in controls) were faster in the left hemisphere (p < 0.029) than the right. Transient barriers to disease progression appeared at limbic/frontal boundaries. This degenerative sequence, observed in vivo as it developed, provides the first quantitative, dynamic visualization of cortical atrophic rates in normal elderly populations and in those with dementia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.