962 resultados para network-lifetime
Resumo:
Details the developments to date of an unmanned air vehicle (UAV) based on a standard size 60 model helicopter. The design goal is to have the helicopter achieve stable hover with the aid of an INS and stereo vision. The focus of the paper is on the development of an artificial neural network (ANN) that makes use of only the INS data to generate hover commands, which are used to directly manipulate the flight servos. Current results show that networks incorporating some form of recurrency (state history) offer little advantage over those without. At this stage, the ANN has partially maintained periods of hover even with misaligned sensors.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
This paper presents the unique black markets of asset pooling and leasing services, which exposes the nature and extent of industry-specific threats. We explore how firms providing such services together with their network structures that constitute the foundations of asset pooling and leasing respond to the threat of black markets. We encapsulate detecting and encountering the threat of black markets through the theoretical lens of agility, which encompasses the elements of sensing and responding (Overby et al. 2006; Roberts and Grover 2012). This novel concept of responding to threats using the agility lens has not been adequately addressed by past studies on enterprise agility. Through a case study of a global asset pooling and leasing company, we reveal the criticality of network structures, the impracticality of IT and inadequate tracking mechanisms that challenge firms in minimizing such threats.
Resumo:
Compact arrays enable various applications such as antenna beam-forming and multi-input, multi-output (MIMO) schemes on limited-size platforms. The reduced element spacing in compact arrays introduces high levels of mutual coupling which can affect the performance of the adaptive array. This coupling causes a mismatch at the input ports, which disturbs the performance of the individual elements in the array and affects the implementation of beam steering. In this article, a reactive decoupling network for a 3-element monopole array is used to establish port isolation while simultaneously matching input impedance at each port to the system impendence. The integrated decoupling and matching network is incorporated in the ground plane of the monopole array, providing further development scope for beamforming using phase shifters and power splitters in double-layered circuits.
Resumo:
This research study investigates the application of phase shifter-based smart antenna system in distributed beamforming. It examines the way to optimise the transmit power by jointly maximising the directivity of the array antennas and the weight vector for distributed beamforming. This research study concludes that maximising directivity can lead to better transmit power minimisation compared to maximising field intensity. This study also concludes that signal to noise power ratio maximisation subject to a power constraint and power minimisation subject to a signal to noise power ratio constraint yield the same results.
Resumo:
The motivation for this analysis is the recently developed Excellence in Research for Australia (ERA) program developed to assess the quality of research in Australia. The objective is to develop an appropriate empirical model that better represents the underlying production of higher education research. In general, past studies on university research performance have used standard DEA models with some quantifiable research outputs. However, these suffer from the twin maladies of an inappropriate production specification and a lack of consideration of the quality of output. By including the qualitative attributes of peer-reviewed journals, we develop a procedure that captures both quality and quantity, and apply it using a network DEA model. Our main finding is that standard DEA models tend to overstate the research efficiency of most Australian universities.
Resumo:
Genetic correlation (rg) analysis determines how much of the correlation between two measures is due to common genetic influences. In an analysis of 4 Tesla diffusion tensor images (DTI) from 531 healthy young adult twins and their siblings, we generalized the concept of genetic correlation to determine common genetic influences on white matter integrity, measured by fractional anisotropy (FA), at all points of the brain, yielding an NxN genetic correlation matrix rg(x,y) between FA values at all pairs of voxels in the brain. With hierarchical clustering, we identified brain regions with relatively homogeneous genetic determinants, to boost the power to identify causal single nucleotide polymorphisms (SNP). We applied genome-wide association (GWA) to assess associations between 529,497 SNPs and FA in clusters defined by hubs of the clustered genetic correlation matrix. We identified a network of genes, with a scale-free topology, that influences white matter integrity over multiple brain regions.
Resumo:
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
Successful project management depends upon forming and maintaining relationships between and among project team members and stakeholder groups. The nature of these relationships and the patterns that they form affect communication, collaboration and resource flows. Networks affect us directly, and we use them to influence people and processes. Social Network Analysis (SNA) can be an extremely valuable research tool to better understand how critical social networks develop and influence work processes, particularly as projects become larger and more complex. This chapter introduces foundational network concepts, helps you determine if SNA could help you answer your research questions, and explains how to design and implement a social network study. At the end of this chapter, the reader can: understand foundational concepts about social networks; decide if SNA is an appropriate research methodology to address particular questions or problems; design and implement a basic social network study.
Resumo:
Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.