990 resultados para necrosis in forestomach
Resumo:
Background: Areas that are endemic for malaria are also highly endemic for hepatitis B virus (HBV) infection. Nevertheless, it is unknown whether HBV infection modifies the clinical presentation of malaria. This study aimed to address this question. Methodology and Findings: An observational study of 636 individuals was performed in Rondonia, western Amazon, Brazil between 2006 and 2007. Active and passive case detections identified Plasmodium infection by field microscopy and nested Polymerase Chain Reaction (PCR). HBV infections were identified by serology and confirmed by real-time PCR. Epidemiological information and plasma cytokine profiles were studied. The data were analyzed using adjusted multinomial logistic regression. Plasmodium-infected individuals with active HBV infection were more likely to be asymptomatic (OR: 120.13, P < 0.0001), present with lower levels of parasitemia and demonstrate a decreased inflammatory cytokine profile. Nevertheless, co-infected individuals presented higher HBV viremia. Plasmodium parasitemia inversely correlated with plasma HBV DNA levels (r=-0.6; P=0.0003). Conclusion: HBV infection diminishes the intensity of malaria infection in individuals from this endemic area. This effect seems related to cytokine balance and control of inflammatory responses. These findings add important insights to the understanding of the factors affecting the clinical outcomes of malaria in endemic regions.
Resumo:
Purpose: To evaluate the ocular toxicity of escalating doses of intravitreous adalimumab (Humira (R)) in the rabbit eye. Methods: Thirty New Zealand albino rabbits received intravitreous injections of 0.5mg (6 eyes), 1.0mg (6 eyes), 2.5mg (6 eyes), 5mg (6 eyes), and 10mg (6 eyes) adalimumab. Slit lamp biomicroscopy and fundoscopy were carried out at baseline, day 7, and day 14 after intravitreous injection, whereas electroretinography (ERG) was carried out at baseline and day 14. Animals were euthanized on day 14, and histopathological examination of the eyes was performed. Results: Slit lamp biomicroscopy and fundoscopy were normal in all eyes receiving doses up to 5mg. In the 10mg group, 3 of 6 eyes showed mild anterior chamber inflammatory reaction on day 7. Similarly, scotopic and photopic a- and b-wave ERG amplitudes at baseline and day 14 were similar in all groups up to 5mg, but there was a significant decrease in the photopic-wave ERG response in the 10mg group (P = 0.046). Finally, histopathology demonstrated no differences among eyes receiving balanced salt solution, 0.5, 1.0, 2.5, 5.0, or 10mg of adalimumab. Conclusions: Intravitreous adalimumab exhibited no associated ocular short-term toxicity in rabbit eyes up to the 5mg dose. In the 10mg group mild clinical findings and ERG amplitude reduction could reflect early toxicity.
Resumo:
This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms. Muscle Nerve 42: 778-787,2010
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro- (TNF-alpha) and anti- (IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-alpha and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/week, for 8-10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-alpha protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-alpha ratio was increased. This ""anti-inflammatory effect"" was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work investigates the influence of heat shock proteins (HSPs) on necrosis and subsequent skeletal muscle regeneration induced by crotoxin (CTX), the major component of Crotalus durissus terrificus venom. Mice were treated with radicicol, a HSP inductor, followed by an intramuscular injection of CTX into the gastrocnemius muscle. Treated groups were sacrificed 1, 10 and 21 days after CTX injection. Muscle histological sections were stained with toluidine blue and assayed for acid phosphatase or immunostained with either neuronal cell adhesion molecule (NCAM) or neonatal myosin heavy chain (MHCn). Muscle samples were also submitted to Western blotting analysis. The results show that CTX alone and CTX combined with radicicol induced a similar degree of myofiber necrosis. CTX-injured muscles treated with radicicol had increased cross-sectional areas at 10 and 21 days post-lesion compared with untreated CTX-injured muscles. Additionally, radicicol significantly increased the number of NCAM-positive satellite cells in the gastrocnemius at one day post-CTX injury. CTX-injured Muscles treated with radicicol contained more MHCn-positive regenerating myofibers compared with untreated CTX-injured muscles. These results suggest that HSPs contribute to the regeneration of myofibers damaged by CTX. Additionally, further studies should investigate the potential therapeutic effects of radicicol in skeletal muscles affected by Crotalus venom. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Study design: This is cross-sectional study. Objectives: The aim of this study is to investigate the cardiac structure and function of subjects with spinal cord injury (SCI) and the impact of metabolic, hemodynamic and inflammatory factors on these parameters. Setting: Sao Paulo, Brazil. Methods: Sixty-five nondiabetic, nonhypertensive, sedentary, nonsmoker men (34 with SCI and 31 healthy subjects) were evaluated by medical history, anthropometry, laboratory tests, analysis of hemodynamic and inflammatory parameters and echocardiography. Results: Subjects with SCI had lower systolic blood pressure and higher levels of C-reactive protein and tumor necrosis factor receptors than the healthy ones. Echocardiography data showed that the SCI group presented similar left ventricular (LV) structural and systolic parameters, but lower initial diastolic velocity (Em) (9.2 +/- 0.5 vs 12.3 +/- 0.5 cm s(-1); P<0.001) and higher peak early inflow velocity (E)/Em ratio (7.7 +/- 0.5 vs 6.1 +/- 0.3; P = 0.009) compared with the able-bodied group, even after adjustment for systolic blood pressure and C-reactive protein levels. Furthermore, injured subjects with E/Em >8 had lower peak spectral longitudinal contraction (Sm) (9.0 +/- 0.7 vs 11.6 +/- 0.4cm s(-1); P<0.001) and cardiac output (4.2 +/- 0.2 vs 5.0 +/- 0.21 min(-1); P = 0.029), as well as higher relative wall thickness (0.38 +/- 0.01 vs 0.35 +/- 0.01; P = 0.005), than individuals with SCI with E/Em<8, but similar age, body mass index, blood pressure, injury level, metabolic parameters and inflammatory marker levels. Conclusion: Subjects with SCI presented impaired LV diastolic function in comparison with able-bodied ones. Moreover, worse LV diastolic function was associated with a pattern of LV concentric remodeling and subclinical decreases in systolic function among injured subjects. Overall, these findings might contribute to explain the increased cardiovascular risk reported for individuals with SCI. Spinal Cord (2011) 49, 65-69; doi: 10.1038/sc.2010.88; published online 27 July 2010
Resumo:
A Carica papaya plant with severe yellow leaf mosaic, leaf distortion, and systemic necrosis was found in the municipality of Piracicaba, state of So Paulo, Brazil. Transmission electron microscopy (TEM) analysis revealed the presence of potyvirus-like particles and bacilliform particles similar to those of the Alfamovirus genus. The potyvirus was identified as Papaya ringspot virus-type P (PRSV-P). Biological, serological, and molecular studies confirmed the bacilliform virus as an isolate of Alfalfa mosaic virus (AMV). Partial nucleotide and amino acid sequences of the coat protein gene of this AMV isolate shared 97-98% identity with the AMV isolates in the GenBank database. This report is the first of the natural infection of papaya plants by AMV.
Resumo:
Background: Chronic Kidney Disease (CKD) patients present high levels of electronegative LDL (LDL) that can modulate the expression of molecules involved in inflammation and it is closely linked to atherosclerosis. We investigated the association between LDL(-) and inflammatory markers in patients undergoing hemodialysis (HD). Methods: Forty-seven HD patients from a private clinic in Rio de Janeiro, Brazil were studied and compared with 20 age matched healthy individuals. Serum LDL(-) and anti-LDL(-) autoantibody levels were measured by ELISA; TNF-alpha, IL-6, VCAM-1 and ICAM-1 were determined by a multiplex assay kit. Results: HD patients presented higher IL-6 and TNF-alpha concentrations (4.1 +/- 1.6 and 5.5 +/- 2.1 pg/ml, respectively) than healthy subjects (2.6 +/- 0.2 and 2.4 +/- 1.1 pg/ml, respectively) (p = 0.0001). In addition, they presented higher VCAM-1 and ICAM-1 levels and, LDL(-) concentrations were also increased (0.18 +/- 0.12 U/I) when compared to healthy individuals (0.10 +/- 0.08 U/I) (p<0.02). In contrast, the anti-LDL(-) autoantibody levels were lower in HD patients (0.02 +/- 0.01 mg/l) than in healthy subjects (0.05 +/- 0.03 mg/l) (p<0.001). There was a positive correlation between LDL(-) and IL-6 (r = 0.25, p = 0.004) and ICAM-1 (r = 0.36; p = 0.003). There was also a negative correlation between anti-LDL(-) autoantibodies and TNF-alpha (r = -0.37; p = 0.003) and VCAM-1 (r = -0.50; p = 0.0001). Conclusions: The association between LDL(-) and inflammation and the lower levels of anti-LDL(-) autoantibodies are important risk factors related to atherosclerosis in CKD. (C) 2011 Published by Elsevier B.V.
Resumo:
Objective: Glutamine is one of the most abundant amino acids found in maternal milk, and its concentration increases throughout lactation. Because glutamine is essential for macrophage functionality, it is hereby suggested that early weaning in conjunction with the absence of glutamine consumption impairs the functioning of macrophages, which could in turn be reversed with an in vitro supplementation with glutamine. Methods: Swiss Webster mice were early weaned at 14 d of age (EW group) or at 21 d of age (control group, n = 8 per group). The EW group was fed a glutamine-free diet from days 14 to 21 of life. Results: Mice in the EW group presented a significant decrease in plasma and muscle concentrations of glutamine and an increase in the activity of glutamine synthetase in the muscle. Peritoneal macrophages obtained from animals in the EW group presented a significant increase in the production of interleukin (IL)-10 and a significant decrease in the synthesis of IL-1 beta, IL-6, tumor necrosis factor-a, nitric oxide, and hydrogen peroxide and in their ability to adhere, spread, phagocytize, and kill fungi. Glutamine in vitro supplementation reversed the decrease in IL-6, nitric oxide, and hydrogen peroxide synthesis and the decrease in the capacity to adhere, spread, and phagocytize in animals of the EW group. Conclusion: These new. data may imply that a lack of glutamine intake in early weaned mice hampers the functioning of peritoneal macrophages. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappa B is kept from binding to its consensus sequence by the inhibitor I kappa B alpha, which retains NF-kappa B in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappa B alpha is rapidly degraded and NF-kappa B is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappa B. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-a by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappa B alpha and NF-kappa B, NF-kappa B activation and TNF-alpha mRNA and protein synthesis inmacrophages. Two-month-old male BALB/Cmice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-a mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappa B activation after LPS stimulation. These results led us to conclude that PEM changes NF-kappa B signalling pathway in macrophages to LPS stimulus.
Resumo:
The aim of this study was to determine the apoptotic pathways and mechanisms involved in electronegative LDL [LDL(-)]-induced apoptosis in RAW 264.7 macrophages and the role of Nrf2 in this process. Incubation of RAW 264 7 macrophages with LDL(-) for 24 11 resulted in dose-dependent cell death. Activated caspases were shown to be involved in the apoptosis induced by LDL(-): incubation with the broad caspase inhibitor z-VAD prevented apoptosis in LDL(-)-treated cells CD95 (Fas), CD95 ligand (FasL). CD36 and the tumor necrosis factor (TNF) ligand Tnfsf10 were overexpressed in LDL(-)-treated cells However, Bax, Bcl-2 and Mcl-1 protein levels remained unchanged after LDL(-) treatment. LDL(-) promoted hyperpolarization of the mitochondrial membrane, elevated reactive oxygen species (ROS) production and translocation of Nrf2 to the nucleus, a process absent in cells treated with native LDL Elicited peritoneal macrophages from Nrf2-deficient mice exhibited an elevated apoptotic response after challenge with LDL(-), together with an increase in the production of ROS in the absence of alterations in CD36 expression These results provide evidence that CD36 expression induced by LDL(-) is Nrf2-dependent. Also, it was demonstrated that Nrf2 acts as a compensatory mechanism of LDL(-)-induced apoptosis in macrophages. (C) 2009 Elsevier B V. All rights reserved
Resumo:
The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Looking for possible neuroimmune relationships, we analyzed the effects of methylenedioxymethamphetamine (MDMA) administration on neuroendocrine, neutrophil activity and leukocyte distribution in mice. Methods: Five experiments were performed. In the first, mice were treated with MDMA (10 mg/kg) 30, 60 min and 24 h prior to blood sample collection for neutrophil activity analysis. In the second experiment, the blood of nave mice was collected and incubated with MDMA for neutrophil activity in vitro analysis. In the third and fourth experiments, mice were injected with MDMA (10 mg/kg) and 60 min later, blood and brain were collected to analyze corticosterone serum levels and hypothalamic noradrenaline (NA) levels and turnover. In the last experiment, mice were injected with MDMA 10 mg/kg and 60 min later, blood, bone marrow and spleen were collected for leukocyte distribution analysis. Results: Results showed an increase in hypothalamic NA turnover and corticosterone serum levels 60 min after MDMA (10 mg/kg) administration, a decrease in peripheral blood neutrophil oxidative burst and a decrease in the percentage and intensity of neutrophil phagocytosis. It was further found that MDMA (10 mg/kg) treatment also altered leukocyte distribution in blood, bone marrow and spleen. In addition, no effects were observed for MDMA after in vitro exposure both in neutrophil oxidative burst and phagocytosis. Conclusion: The effects of MDMA administration (10 mg/kg) on neutrophil activity and leukocyte distribution might have been induced indirectly through noradrenergic neurons and/or hypothalamic-pituitary-adrenal axis activations. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.