781 resultados para musicians, drinking vessels, birds, medallions, garden
Resumo:
Birds have remained the dominant model for studying the mechanisms of animal navigation for decades, with much of what has been discovered coming from laboratory studies or model systems. The miniaturisation of tracking technology in recent years now promises opportunities for studying navigation during migration itself (migratory navigation) on an unprecedented scale. Even if migration tracking studies are principally being designed for other purposes, we argue that attention to salient environmental variables during the design or analysis of a study may enable a host of navigational questions to be addressed, greatly enriching the field. We explore candidate variables in the form of a series of contrasts (e. g. land vs ocean or night vs day migration), which may vary naturally between migratory species, populations or even within the life span of a migrating individual. We discuss how these contrasts might help address questions of sensory mechanisms, spatiotemporal representational strategies and adaptive variation in navigational ability. We suggest that this comparative approach may help enrich our knowledge about the natural history of migratory navigation in birds.
Resumo:
Predicting how species distributions might shift as global climate changes is fundamental to the successful adaptation of conservation policy. An increasing number of studies have responded to this challenge by using climate envelopes, modeling the association between climate variables and species distributions. However, it is difficult to quantify how well species actually match climate. Here, we use null models to show that species-climate associations found by climate envelope methods are no better than chance for 68 of 100 European bird species. In line with predictions, we demonstrate that the species with distribution limits determined by climate have more northerly ranges. We conclude that scientific studies and climate change adaptation policies based on the indiscriminate use of climate envelope methods irrespective of species sensitivity to climate may be misleading and in need of revision.
Resumo:
Under EU legislation, total arsenic levels in drinking water should not exceed 10 microg l(-1), while in the US this figure is set at 10 microg l(-1) inorganic arsenic. All rice milk samples analysed in a supermarket survey (n = 19) would fail the EU limit with up to 3 times this concentration recorded, while out of the subset that had arsenic species determined (n = 15), 80% had inorganic arsenic levels above 10 microg l(-1), with the remaining 3 samples approaching this value. It is a point for discussion whether rice milk is seen as a water substitute or as a food, there are no EU or US food standards highlighting the disparity between water and food regulations in this respect.
Resumo:
Birds of prey forage over large areas and so might be expected to accumulate contaminants which are elevated but heterogeneously distributed in the general environment. The aim of this study was to test the hypothesis that arsenic levels in raptors from a region with elevated environmental arsenic concentrations were higher than those in birds from an uncontaminated part of Britain. Arsenic concentrations in the liver, kidney and muscle of kestrels, Falco tinnunculus, sparrowhawks, Accipiter nisus, and barn owls, Tyto alba, from south-west (SW) England, an area with naturally and anthropogenically (through mining) elevated environmental arsenic concentrations, were compared with those in birds from SW Scotland, where no such geochemical anomaly exists. Arsenic residues in kestrels from SW England were approximately three times greater than those in birds from SW Scotland for the three tissue types analysed. This was not the case for the other species in which arsenic residues were similar in birds from both regions. It is suggested that differences between species in both diet and arsenic metabolism could explain why kestrels have elevated arsenic tissue burdens in response to general environmental contamination but sparrowhawks and barn owls do not.
Resumo:
The bones (humerus and/or femur) of 229 birds of prey from 11 species were analyzed for Pb and As to evaluate their exposure to Pb shot. The species with the highest mean Pb levels were red kite (Milvus milvus) and Eurasian griffon (Gyps fulvus), and the species with the lowest levels were Eurasian buzzard (Buteo buteo) and booted eagle (Hieraaetus pennatus). Red kite also had the highest mean As level, an element present in small amounts in Pb shot. Elevated bone Pb concentrations (>10 microg/g dry weight) were found in 10 birds from six species. Clinical signs compatible with lethal Pb poisoning and/or excessive bone Pb concentrations (>20 microg/g) were observed in one Eurasian eagle-owl (Bubo bubo), one red kite, and one Eurasian griffon. Pb poisoning has been diagnosed in eight upland raptor species in Spain to date.
Resumo:
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo-presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real-presence data with forest layer are better predictors than those from pseudo-presence data. Using real-presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.
Resumo:
The ancillary (non-sounding) body movements made by expert musicians during performance have been shown to indicate expressive, emotional, and structural features of the music to observers, even if the sound of the performance is absent. If such ancillary body movements are a component of skilled musical performance, then it should follow that acquiring the temporal control of such movements is a feature of musical skill acquisition. This proposition is tested using measures derived from a theory of temporal guidance of movement, “General Tau Theory” (Lee in Ecol Psychol 10:221–250, 1998; Lee et al. in Exp Brain Res 139:151–159, 2001), to compare movements made during performances of intermediate-level clarinetists before and after learning a new piece of music. Results indicate that the temporal control of ancillary body movements made by participants was stronger in performances after the music had been learned and was closer to the measures of temporal control found for an expert musician’s movements. These findings provide evidence that the temporal control of musicians’ ancillary body movements develops with musical learning. These results have implications for other skillful behaviors and nonverbal communication.