961 resultados para musical instruments
Resumo:
[Vente (Art). 1832-03-09. Paris]
Resumo:
Experiential Learning Instruments (ELls) are employed to modify the leamer's apprehension and / or comprehension in experiential learning situations, thereby improving the efficiency and effectiveness of those modalities in the learning process. They involve the learner in reciprocally interactive and determining transactions with his/her environment. Experiential Learning Instruments are used to keep experiential learning a process rather than an object. Their use is aimed at the continual refinement of the learner's knowledge and skill. Learning happens as the leamer's awareness, directed by the use of Ells, comes to experience, monitor and then use experiential feedback from living situations in a way that facilitates knmvledge/skill acquisition, self-correction and refinement. The thesis examined the literature relevant to the establishing of a theoretical experiential learning framework within which ELls can be understood. This framework included the concept that some learnings have intrinsic value-knowledge of necessary information-while others have instrumental value-knowledge of how to learn. The Kolb Learning Cycle and Kolb's six characteristics of experiential learning were used in analyzing three ELls from different fields of learning-saxophone tone production, body building and interpersonal communications. The ELls were examined to determine their learning objectives and how they work using experiential learning situations. It was noted that ELls do not transmit information but assist the learner in attending to and comprehending aspects of personal experience. Their function is to telescope the experiential learning process.
Resumo:
List of instruments which are the property of Port Dalhousie and Thorold Railway in the possession of F. Laler. This document is signed by S.D. Woodruff, Dec. 4, 1856.
Resumo:
Receipt from W. H. Eckhardt, Pianos, Organs, Sheet Music and Musical Merchandise for piano, May 9, 1887.
Resumo:
Tesis (Maestría en Formación y Capacitacion de Recursos Humanos) UANL
Resumo:
Tesis (Maestría en Artes con acentuación en Artes Visuales) UANL, 2014.
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.