889 resultados para multiple approach
Resumo:
Data envelopment analysis (DEA) has been proven as an excellent data-oriented efficiency analysis method for comparing decision making units (DMUs) with multiple inputs and multiple outputs. In conventional DEA, it is assumed that the status of each measure is clearly known as either input or output. However, in some situations, a performance measure can play input role for some DMUs and output role for others. Cook and Zhu [Eur. J. Oper. Res. 180 (2007) 692–699] referred to these variables as flexible measures. The paper proposes an alternative model in which each flexible measure is treated as either input or output variable to maximize the technical efficiency of the DMU under evaluation. The main focus of this paper is on the impact that the flexible measures has on the definition of the PPS and the assessment of technical efficiency. An example in UK higher education intuitions shows applicability of the proposed approach.
Resumo:
This paper clarifies the role of alternative optimal solutions in the clustering of multidimensional observations using data envelopment analysis (DEA). The paper shows that alternative optimal solutions corresponding to several units produce different groups with different sizes and different decision making units (DMUs) at each class. This implies that a specific DMU may be grouped into different clusters when the corresponding DEA model has multiple optimal solutions. © 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the knowledge elicitation and knowledge representation aspects of a system being developed to help with the design and maintenance of relational data bases. The size algorithmic components. In addition, the domain contains multiple experts, but any given expert's knowledge of this large domain is only partial. The paper discusses the methods and techniques used for knowledge elicitation, which was based on a "broad and shallow" approach at first, moving to a "narrow and deep" one later, and describes the models used for knowledge representation, which were based on a layered "generic and variants" approach. © 1995.
Resumo:
Purpose: The purpose of this paper is to review the literature which focuses on four major higher education decision problems. These are: resource allocation; performance measurement; budgeting; and scheduling. Design/methodology/approach: Related articles appearing in the international journals from 1996 to 2005 are gathered and analyzed so that the following three questions can be answered: "What kind of decision problems were paid most attention to?"; "Were the multiple criteria decision-making techniques prevalently adopted?"; and "What are the inadequacies of these approaches?" Findings: Based on the inadequacies, some improvements and possible future work are recommended, and a comprehensive resource allocation model is developed taking account of these factors. Finally, a new knowledge-based goal programming technique which integrates some operations of analytic hierarchy process is proposed to tackle the model intelligently. Originality/value: Higher education has faced the problem of budget cuts or constrained budgets for the past 30 years. Managing the process of the higher education system is, therefore, a crucial and urgent task for the decision makers of universities in order to improve their performance or competitiveness. © Emerald Group Publishing Limited.
Resumo:
The Multiple Pheromone Ant Clustering Algorithm (MPACA) models the collective behaviour of ants to find clusters in data and to assign objects to the most appropriate class. It is an ant colony optimisation approach that uses pheromones to mark paths linking objects that are similar and potentially members of the same cluster or class. Its novelty is in the way it uses separate pheromones for each descriptive attribute of the object rather than a single pheromone representing the whole object. Ants that encounter other ants frequently enough can combine the attribute values they are detecting, which enables the MPACA to learn influential variable interactions. This paper applies the model to real-world data from two domains. One is logistics, focusing on resource allocation rather than the more traditional vehicle-routing problem. The other is mental-health risk assessment. The task for the MPACA in each domain was to predict class membership where the classes for the logistics domain were the levels of demand on haulage company resources and the mental-health classes were levels of suicide risk. Results on these noisy real-world data were promising, demonstrating the ability of the MPACA to find patterns in the data with accuracy comparable to more traditional linear regression models. © 2013 Polish Information Processing Society.
Resumo:
Clinical Decision Support Systems (CDSSs) need to disseminate expertise in formats that suit different end users and with functionality tuned to the context of assessment. This paper reports research into a method for designing and implementing knowledge structures that facilitate the required flexibility. A psychological model of expertise is represented using a series of formally specified and linked XML trees that capture increasing elements of the model, starting with hierarchical structuring, incorporating reasoning with uncertainty, and ending with delivering the final CDSS. The method was applied to the Galatean Risk and Safety Tool, GRiST, which is a web-based clinical decision support system (www.egrist.org) for assessing mental-health risks. Results of its clinical implementation demonstrate that the method can produce a system that is able to deliver expertise targetted and formatted for specific patient groups, different clinical disciplines, and alternative assessment settings. The approach may be useful for developing other real-world systems using human expertise and is currently being applied to a logistics domain. © 2013 Polish Information Processing Society.
Resumo:
Purpose - To evaluate adherence to prescribed antiepileptic drugs (AEDs) in children with epilepsy using a combination of adherence-assessment methods. Methods - A total of 100 children with epilepsy (≤17 years old) were recruited. Medication adherence was determined via parental and child self-reporting (≥9 years old), medication refill data from general practitioner (GP) prescribing records, and via AED concentrations in dried blood spot (DBS) samples obtained from children at the clinic and via self- or parental-led sampling in children's own homes. The latter were assessed using population pharmacokinetic modeling. Patients were deemed nonadherent if any of these measures were indicative of nonadherence with the prescribed treatment. In addition, beliefs about medicines, parental confidence in seizure management, and the presence of depressed mood in parents were evaluated to examine their association with nonadherence in the participating children. Key Findings - The overall rate of nonadherence in children with epilepsy was 33%. Logistic regression analysis indicated that children with generalized epilepsy (vs. focal epilepsy) were more likely (odds ratio [OR] 4.7, 95% confidence interval [CI] 1.37–15.81) to be classified as nonadherent as were children whose parents have depressed mood (OR 3.6, 95% CI 1.16–11.41). Significance - This is the first study to apply the novel methodology of determining adherence via AED concentrations in clinic and home DBS samples. The present findings show that the latter, with further development, could be a useful approach to adherence assessment when combined with other measures including parent and child self-reporting. Seizure type and parental depressed mood were strongly predictive of nonadherence.
Resumo:
The goal of this project was to investigate the neural correlates of reading impairment in dyslexia as hypothesised by the main theories – the phonological deficit, visual magnocellular deficit and cerebellar deficit theories, with emphasis on individual differences. This research took a novel approach by: 1) contrasting the predictions in one sample of participants with dyslexia (DPs); 2) using a multiple-case study (and between-group comparisons) to investigate differences in BOLD between each DP and the controls (CPs); 3) demonstrating a possible relationship between reading impairment and its hypothesised neural correlates by using fMRI and a reading task. The multiple-case study revealed that the neural correlates of reading in dyslexia in all cases are not in agreement with the predictions of a single theory. The results show striking individual differences - even, where the neural correlates of reading in two DPs are consistent with the same theory, the areas can differ. A DP can exhibit under-engagement in an area in word, but not in pseudoword reading and vice versa, demonstrating that underactivation in that area cannot be interpreted as a ‘developmental lesion’. Additional analyses revealed complex results. Within-group analyses between behavioural measures and BOLD showed correlations in the predicted regions, areas outside ROI, and lack of correlations in some predicted areas. Comparisons of subgroups which differed on Orthography Composite supported the MDT, but only for Words. The results suggest that phonological scores are not a sufficient predictor of the under-engagement of phonological areas during reading. DPs and CPs exhibited correlations between Purdue Pegboard Composite and BOLD in cerebellar areas only for Pseudowords. Future research into reading in dyslexia should use a more holistic approach, involving genetic and environmental factors, gene by environment interaction, and comorbidity with other disorders. It is argued that multidisciplinary research, within the multiple-deficit model holds significant promise here.
Resumo:
This is the first of two linked papers exploring decision making in nursing which integrate research evidence from different clinical and academic disciplines. Currently there are many decision-making theories, each with their own distinctive concepts and terminology, and there is a tendency for separate disciplines to view their own decision-making processes as unique. Identifying good nursing decisions and where improvements can be made is therefore problematic, and this can undermine clinical and organizational effectiveness, as well as nurses' professional status. Within the unifying framework of psychological classification, the overall aim of the two papers is to clarify and compare terms, concepts and processes identified in a diversity of decision-making theories, and to demonstrate their underlying similarities. It is argued that the range of explanations used across disciplines can usefully be re-conceptualized as classification behaviour. This paper explores problems arising from multiple theories of decision making being applied to separate clinical disciplines. Attention is given to detrimental effects on nursing practice within the context of multidisciplinary health-care organizations and the changing role of nurses. The different theories are outlined and difficulties in applying them to nursing decisions highlighted. An alternative approach based on a general model of classification is then presented in detail to introduce its terminology and the unifying framework for interpreting all types of decisions. The classification model is used to provide the context for relating alternative philosophical approaches and to define decision-making activities common to all clinical domains. This may benefit nurses by improving multidisciplinary collaboration and weakening clinical elitism.
Resumo:
Background - Modelling the interaction between potentially antigenic peptides and Major Histocompatibility Complex (MHC) molecules is a key step in identifying potential T-cell epitopes. For Class II MHC alleles, the binding groove is open at both ends, causing ambiguity in the positional alignment between the groove and peptide, as well as creating uncertainty as to what parts of the peptide interact with the MHC. Moreover, the antigenic peptides have variable lengths, making naive modelling methods difficult to apply. This paper introduces a kernel method that can handle variable length peptides effectively by quantifying similarities between peptide sequences and integrating these into the kernel. Results - The kernel approach presented here shows increased prediction accuracy with a significantly higher number of true positives and negatives on multiple MHC class II alleles, when testing data sets from MHCPEP [1], MCHBN [2], and MHCBench [3]. Evaluation by cross validation, when segregating binders and non-binders, produced an average of 0.824 AROC for the MHCBench data sets (up from 0.756), and an average of 0.96 AROC for multiple alleles of the MHCPEP database. Conclusion - The method improves performance over existing state-of-the-art methods of MHC class II peptide binding predictions by using a custom, knowledge-based representation of peptides. Similarity scores, in contrast to a fixed-length, pocket-specific representation of amino acids, provide a flexible and powerful way of modelling MHC binding, and can easily be applied to other dynamic sequence problems.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
The primary aim of this research is to understand what constitutes management accounting and control (MACs) practice and how these control processes are implicated in the day to day work practices and operations of the organisation. It also examines the changes that happen in MACs practices over time as multiple actors within organisational settings interact with each other. I adopt a distinctive practice theory approach (i.e. sociomateriality) and the concept of imbrication in this research to show that MACs practices emerge from the entanglement between human/social agency and material/technological agency within an organisation. Changes in the pattern of MACs practices happens in imbrication processes which are produced as the two agencies entangle. The theoretical approach employed in this research offers an interesting and valuable lens which seeks to reveal the depth of these interactions and uncover the way in which the social and material imbricate. The theoretical framework helps to reveal how these constructions impact on and produce modifications of MACs practices. The exploration of the control practices at different hierarchical levels (i.e. from the operational to middle management and senior level management) using the concept of imbrication process also maps the dynamic flow of controls from operational to top management and vice versa in the organisation. The empirical data which is the focus of this research has been gathered from a case study of an organisation involved in a large vertically integrated palm oil industry company in Malaysia specifically the refinery sector. The palm oil industry is a significant industry in Malaysia as it contributed an average of 4.5% of Malaysian Gross Domestic Product, over the period 1990 -2010. The Malaysian palm oil industry also has a significant presence in global food oil supply where it contributed 26% of the total oils and fats global trade in 2010. The case organisation is a significant contributor to the Malaysian palm oil industry. The research access has provided an interesting opportunity to explore the interactions between different groups of people and material/technology in a relatively heavy process food industry setting. My research examines how these interactions shape and are shaped by control practices in a dynamic cycle of imbrications over both short and medium time periods.
Resumo:
In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.
Resumo:
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.
Resumo:
Defining 'effectiveness' in the context of community mental health teams (CMHTs) has become increasingly difficult under the current pattern of provision required in National Health Service mental health services in England. The aim of this study was to establish the characteristics of multi-professional team working effectiveness in adult CMHTs to develop a new measure of CMHT effectiveness. The study was conducted between May and November 2010 and comprised two stages. Stage 1 used a formative evaluative approach based on the Productivity Measurement and Enhancement System to develop the scale with multiple stakeholder groups over a series of qualitative workshops held in various locations across England. Stage 2 analysed responses from a cross-sectional survey of 1500 members in 135 CMHTs from 11 Mental Health Trusts in England to determine the scale's psychometric properties. Based on an analysis of its structural validity and reliability, the resultant 20-item scale demonstrated good psychometric properties and captured one overall latent factor of CMHT effectiveness comprising seven dimensions: improved service user well-being, creative problem-solving, continuous care, inter-team working, respect between professionals, engagement with carers and therapeutic relationships with service users. The scale will be of significant value to CMHTs and healthcare commissioners both nationally and internationally for monitoring, evaluating and improving team functioning in practice.