970 resultados para monoclonal antibody D2-40
Resumo:
In the corpus callosum of the cat, the heavy subunit of neurofilaments (NFH) can be demonstrated with the monoclonal antibody NE14, as early as P11, not at P3, and only in a few axons. At P18-19 and more markedly at P29, many more callosal axons have become positive to NE14 and this is similar to what is found in the adult. In contrast, callosal axons become positive to the neurofilament antibody SMI-32 only between P29 and P39 and remain positive in the adult. Treatment with alkaline phosphatase prevents axonal staining with NE14, but results in SMI-32 staining of a few callosal axons as early as P11, but not at P3. Between P11 and P19 the number of axons stained with SMI-32 after alkaline phosphatase treatment increases, in parallel with that of axons stained with NE14. Thus NE14 appears to recognize a phosphorylated form of NFH, while SMI-32 appears to recognize an epitope of NFH which is either masked by phosphate or inaccessible until between P29 and P39, unless the tissue is treated with alkaline phosphatase. These two forms of NFH appear towards the end of the period of massive developmental elimination of callosal axons. They are also synchronous with changes in the spacing of neurofilaments quantified in a separate ultrastructural study. These cytoskeletal changes may terminate the juvenile-labile state of callosal axons and allow further axial growth of the axon.
Resumo:
In the metabolic syndrome, glucocorticoid activity is increased, but circulating levels show little change. Most of blood glucocorticoids are bound to corticosteroid-binding globulin (CBG), which liver expression and circulating levels are higher in females than in males. Since blood hormones are also bound to blood cells, and the size of this compartment is considerable for androgens and estrogens, we analyzed whether sex or eating a cafeteria diet altered the compartmentation of corticosterone in rat blood. The main corticosterone compartment in rat blood is that specifically bound to plasma proteins, with smaller compartments bound to blood cells or free. Cafeteria diet increased the expression of liver CBG gene, binding plasma capacity and the proportion of blood cell-bound corticosterone. There were marked sex differences in blood corticosterone compartmentation in rats, which were unrelated to testosterone. The use of a monoclonal antibody ELISA and a polyclonal Western blot for plasma CBG compared with both specific plasma binding of corticosterone and CBG gene expression suggested the existence of different forms of CBG, with varying affinities for corticosterone in males and females, since ELISA data showed higher plasma CBG for males, but binding and Western blot analyses (plus liver gene expression) and higher physiological effectiveness for females. Good cross- reactivity to the antigen for polyclonal CBG antibody suggests that in all cases we were measuring CBG.The different immunoreactivity and binding affinity may help explain the marked sex-related differences in plasma hormone binding as sex-linked different proportions of CBG forms.
Resumo:
BACKGROUND: Regulatory T cells (Tregs) are key players in controlling the development of airway inflammation. However, their role in the mechanisms leading to tolerance in established allergic asthma is unclear. OBJECTIVE: To examine the role of Tregs in tolerance induction in a murine model of asthma. METHODS: Ovalbumin (OVA) sensitized asthmatic mice were depleted or not of CD25(+) T cells by anti-CD25 PC61 monoclonal antibody (mAb) before intranasal treatment (INT) with OVA, then challenged with OVA aerosol. To further evaluate the respective regulatory activity of CD4(+)CD25(+) and CD4(+)CD25(-) T cells, both T cell subsets were transferred from tolerized or non-tolerized animals to asthmatic recipients. Bronchoalveolar lavage fluid (BALF), T cell proliferation and cytokine secretion were examined. RESULTS: Intranasal treatment with OVA led to increased levels of IL-10, TGF-beta and IL-17 in lung homogenates, inhibition of eosinophil recruitment into the BALF and antigen specific T cell hyporesponsiveness. CD4(+)CD25(+)Foxp3(+) T cells were markedly upregulated in lungs and suppressed in vitro and in vivo OVA-specific T cell responses. Depletion of CD25(+) cells before OVA INT severely hampered tolerance induction as indicated by a strong recruitment of eosinophils into BALF and a vigorous T cell response to OVA upon challenge. However, the transfer of CD4(+)CD25(-) T cells not only suppressed antigen specific T cell responsiveness but also significantly reduced eosinophil recruitment as opposed to CD4(+)CD25(+) T cells. As compared with control mice, a significantly higher proportion of CD4(+)CD25(-) T cells from OVA treated mice expressed mTGF-beta. CONCLUSION: Both CD4(+)CD25(+) and CD4(+)CD25(-) T cells appear to be essential to tolerance induction. The relationship between both subsets and the mechanisms of their regulatory activity will have to be further analyzed.
Resumo:
The fully human anti-lipopolysaccharide (LPS) immunoglobulin M (IgM) monoclonal antibody panobacumab was developed as an adjunctive immunotherapy for the treatment of O11 serotype Pseudomonas aeruginosa infections. We evaluated the potential clinical efficacy of panobacumab in the treatment of nosocomial pneumonia. We performed a post-hoc analysis of a multicenter phase IIa trial (NCT00851435) designed to prospectively evaluate the safety and pharmacokinetics of panobacumab. Patients treated with panobacumab (n = 17), including 13 patients receiving the full treatment (three doses of 1.2 mg/kg), were compared to 14 patients who did not receive the antibody. Overall, the 17 patients receiving panobacumab were more ill. They were an average of 72 years old [interquartile range (IQR): 64-79] versus an average of 50 years old (IQR: 30-73) (p = 0.024) and had Acute Physiology and Chronic Health Evaluation II (APACHE II) scores of 17 (IQR: 16-22) versus 15 (IQR: 10-19) (p = 0.043). Adjunctive immunotherapy resulted in an improved clinical outcome in the group receiving the full three-course panobacumab treatment, with a resolution rate of 85 % (11/13) versus 64 % (9/14) (p = 0.048). The Kaplan-Meier survival curve showed a statistically significantly shorter time to clinical resolution in this group of patients (8.0 [IQR: 7.0-11.5] versus 18.5 [IQR: 8-30] days in those who did not receive the antibody; p = 0.004). Panobacumab adjunctive immunotherapy may improve clinical outcome in a shorter time if patients receive the full treatment (three doses). These preliminary results suggest that passive immunotherapy targeting LPS may be a complementary strategy for the treatment of nosocomial O11 P. aeruginosa pneumonia.
Resumo:
BACKGROUND: The outcome of diffuse large B-cell lymphoma has been substantially improved by the addition of the anti-CD20 monoclonal antibody rituximab to chemotherapy regimens. We aimed to assess, in patients aged 18-59 years, the potential survival benefit provided by a dose-intensive immunochemotherapy regimen plus rituximab compared with standard treatment plus rituximab. METHODS: We did an open-label randomised trial comparing dose-intensive rituximab, doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone (R-ACVBP) with subsequent consolidation versus standard rituximab, doxorubicin, cyclophosphamide, vincristine, and prednisone (R-CHOP). Random assignment was done with a computer-assisted randomisation-allocation sequence with a block size of four. Patients were aged 18-59 years with untreated diffuse large B-cell lymphoma and an age-adjusted international prognostic index equal to 1. Our primary endpoint was event-free survival. Our analyses of efficacy and safety were of the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT00140595. FINDINGS: One patient withdrew consent before treatment and 54 did not complete treatment. After a median follow-up of 44 months, our 3-year estimate of event-free survival was 81% (95% CI 75-86) in the R-ACVBP group and 67% (59-73) in the R-CHOP group (hazard ratio [HR] 0·56, 95% CI 0·38-0·83; p=0·0035). 3-year estimates of progression-free survival (87% [95% CI, 81-91] vs 73% [66-79]; HR 0·48 [0·30-0·76]; p=0·0015) and overall survival (92% [87-95] vs 84% [77-89]; HR 0·44 [0·28-0·81]; p=0·0071) were also increased in the R-ACVBP group. 82 (42%) of 196 patients in the R-ACVBP group experienced a serious adverse event compared with 28 (15%) of 183 in the R-CHOP group. Grade 3-4 haematological toxic effects were more common in the R-ACVBP group, with a higher proportion of patients experiencing a febrile neutropenic episode (38% [75 of 196] vs 9% [16 of 183]). INTERPRETATION: Compared with standard R-CHOP, intensified immunochemotherapy with R-ACVBP significantly improves survival of patients aged 18-59 years with diffuse large B-cell lymphoma with low-intermediate risk according to the International Prognostic Index. Haematological toxic effects of the intensive regimen were raised but manageable. FUNDING: Groupe d'Etudes des Lymphomes de l'Adulte and Amgen.
Resumo:
RATIONALE:We investigated the impact of canakinumab, a fully human anti-interleukin-1b monoclonal antibody on inflammation and HRQoL in gouty arthritis patients.METHODS: In this 8-week, single-blind, dose-ranging study, patients with acute gouty arthritis flares, unresponsive/intolerant or contraindicated to NSAIDs and/or colchicine were randomized to single subcutaneous canakinumab (10, 25, 50, 90, or 150mg, N5143) or single intramuscular triamcinolone acetonide (TA, 40mg, N557). Patients assessed pain (Likert scale), physicians assessed clinical signs of joint inflammation, and HRQoL was recorded using SF-36.RESULTS: At baseline, 98% patients had moderate-to-extreme pain, 85% had moderate/severe joint swelling, 64-79% had elevated inflammatory markers and HRQoL scores indicated impaired physical function. Percentage of patients with no/mild pain was numerically greater in most canakinumab groups vs. TA, 24-72h post-dose; difference significant for 150mg group at these time-points (P<0.05). Canakinumab 150mg was associated with significantly lower Likert scores for tenderness [OR, 3.2; 95% CI, 1.27-7.89; P50.014] and swelling (OR, 2.7; 95% CI, 1.09-6.50, P50.032) at 72h vs. TA; erythema was not different. Median CRP and SAA levels normalized by 7 days post-dose in most canakinumab groups, but remained elevated in TA. Physical function improved at 7 days postdose in all groups, highest improvement for canakinumab 150mg. SF-36 scores for physical functioning and bodily pain with canakinumab 150mg approached US general population scores by 7 days post-dose and exceeded normal values by 8 weeks post-dose.CONCLUSION: Canakinumab 150mg produced significantly greater and rapid pain-relief and improvements in HRQoL vs. TAin acute gouty arthritis patients.
Resumo:
Tumour localisation and tumour to normal tissue ratios of a chimeric anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb), in intact form and as an F(ab')2 fragment labelled with 125I and 131I, were compared in groups of nude mice bearing four different colon cancer xenografts, T380, Co112 or LoVo, of human origin, or a rat colon cancer transfected with human CEA cDNA, called '3G7'. For each tumour, three to four mice per time point were analysed 6, 12, 24, 48 and 96 h after MAb injection. In the different tumours, maximal localisation of intact MAb was obtained at 24 to 48 h, and of F(ab')2 fragment 12 to 24 h after injection. Among the different tumours, localisation was highest with colon cancer T380, with 64% of the injected dose per gram (% ID/g) for the intact MAb and 57% for its F(ab')2 fragment, while in the three other tumours, maximal localisation ranged from 14 to 22% ID g-1 for the intact MAb and was about 11% for the F(ab')2. Tumour to normal tissue ratios of intact MAb increased rapidly until 24 h after injection and remained stable or showed only a minor increase thereafter. In contrast, for the F(ab')2 fragment, the tumour to normal tissue ratios increased steadily up to 4 days after injection reaching markedly higher values than those obtained with intact MAb. For the four different xenografts, tumour to blood ratios of F(ab')2 were about 2, 3 and 5 to 16 times higher than those of intact antibodies at 12, 24 and 96 h after injection, respectively.
Resumo:
HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens.
Resumo:
The major antigen on the envelope of extracellular vaccinia virus particles is a polypeptide with an apparent molecular weight of 37,000 (p37K; G. Hiller and K. Weber, J. Virol. 55:651-659, 1985). The gene encoding p37K was mapped in the vaccinia virus genome by hybrid selection of RNA followed by in vitro translation. p37K was then identified among the in vitro translation products by immunoprecipitation with a monoclonal antibody. The gene is located close to the right-hand end of the HindIII F fragment. The corresponding region of the DNA was sequenced, and an open reading frame encoding a polypeptide of 41,748 daltons was observed. The 5' end of the mRNA, as defined by nuclease S1 analysis, maps within only a few nucleotides of the translation initiation codon. Examination of the DNA sequence around the putative initiation site of transcription revealed a characteristic sequence, TAAATG, which includes the ATG translation initiation codon and which is conserved in all but one late gene so far analyzed. It is therefore likely that this sequence is an important regulatory signal for late gene expression in vaccinia virus.
Resumo:
BACKGROUND: The management of unresectable metastatic colorectal cancer (mCRC) is a comprehensive treatment strategy involving several lines of therapy, maintenance, salvage surgery, and treatment-free intervals. Besides chemotherapy (fluoropyrimidine, oxaliplatin, irinotecan), molecular-targeted agents such as anti-angiogenic agents (bevacizumab, aflibercept, regorafenib) and anti-epidermal growth factor receptor agents (cetuximab, panitumumab) have become available. Ultimately, given the increasing cost of new active compounds, new strategy trials are needed to define the optimal use and the best sequencing of these agents. Such new clinical trials require alternative endpoints that can capture the effect of several treatment lines and be measured earlier than overall survival to help shorten the duration and reduce the size and cost of trials. METHODS/DESIGN: STRATEGIC-1 is an international, open-label, randomized, multicenter phase III trial designed to determine an optimally personalized treatment sequence of the available treatment modalities in patients with unresectable RAS wild-type mCRC. Two standard treatment strategies are compared: first-line FOLFIRI-cetuximab, followed by oxaliplatin-based second-line chemotherapy with bevacizumab (Arm A) vs. first-line OPTIMOX-bevacizumab, followed by irinotecan-based second-line chemotherapy with bevacizumab, and by an anti-epidermal growth factor receptor monoclonal antibody with or without irinotecan as third-line treatment (Arm B). The primary endpoint is duration of disease control. A total of 500 patients will be randomized in a 1:1 ratio to one of the two treatment strategies. DISCUSSION: The STRATEGIC-1 trial is designed to give global information on the therapeutic sequences in patients with unresectable RAS wild-type mCRC that in turn is likely to have a significant impact on the management of this patient population. The trial is open for inclusion since August 2013. TRIAL REGISTRATION: STRATEGIC-1 is registered at Clinicaltrials.gov: NCT01910610, 23 July, 2013. STRATEGIC-1 is registered at EudraCT-No.: 2013-001928-19, 25 April, 2013.
Resumo:
Aim: Bevacizumab is a monoclonal antibody directed against the vascular endothelial growth factor (VEGF). The previous phase II trial ABIGAIL (Reck, 2010) suggested circulating VEGF as a prognostic, but not predictive, biomarker for patients (pts) with non-small cell lung cancer (NSCLC) treated with bevacizumab. We prospectively measured VEGF in the multicenter phase II trial SAKK19/09 (NCT01116219). Methods: SAKK19/09 enrolled 77 evaluable patients (pts) with previously untreated, advanced nonsquamous NSCLC and EGFR wild type. Pts received 4 cycles of cisplatin 75mg/m2 (or carboplatin AUC5), pemetrexed 500mg/m2 and bevacizumab 7.5mg/kg, followed by maintenance therapy with pemetrexed and bevacizumab until progression by RECIST1.1. Follow-up CT scans were performed every 6 weeks until week 54 and every 12 weeks thereafter. Baseline EDTA blood samples were sent by same-day courier to the central laboratory for centrifugation, aliquoting, and freezing. Upon completion of enrollment, aliquots were thawed, and VEGF quantification was performed centrally using Luminex® Performance Assay Human Base Kit A (R&D Systems, Abingdon, UK). The mean value was used to stratify pts into two groups (low versus high VEGF). Best response rate assessed by RECIST1.1 (CR + PR versus SD + PD). Results: Clinical results of the SAKK19/09 trial were reported previously (Gautschi, 2013). Baseline plasma VEGF was detectable in 71 of 77 (92%) evaluable patients treated with chemotherapy and bevacizumab. The mean value was 74.9 pg/ml, the median 47.5 pg/ml, and the range 3.55 to 310 pg/ml. Using the mean as a predefined cutoff value, 50 patients had low VEGF levels and 21 patients had high VEGF levels. High VEGF was significantly associated with shorter PFS (4.1 vs 8.3 months, HR = 2.56; 95%CI: 1.43- 4.57; p = 0.0015) and OS (8.7 vs 17.5 months, HR = 2.67; 95% CI: 1.37-5.20; p = 0.0041), but not with best response rate ( p = 0.2256). Conclusions: Consistent with the ABIGAIL trial, circulating VEGF was prognostic, but not predictive for response, in the current trial. Further work is ongoing to identify potentially predictive biomarkers for bevacizumab, using comprehensive proteomic analyses. Disclosure: S.I. Rothschild: I received honoraria for the participation in advisory boards from Eli Lilly and Roche and for presentations at scientific symposiums sponsored by Roche; O. Gautschi: Honoraria for advisory boards of Eli Lilly and Roche; R. Cathomas: Advisory board member: Eli Lilly. All other authors have declared no conflicts of interest.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools.
Resumo:
Strategies that promote selective activation of prodrugs by enzymes can be divided into two major classes: 1) deliver of a monoclonal antibody-enzyme immunoconjugate that can recognize a specific antigen and promote the prodrug to a citotoxic drug, with a high selectivity for the target cells, and 2) selective gene delivery encoding an enzyme that can promote the prodrug to a citotoxic drug for the target cells. In this article are discussed ADEPT (antibody-directed enzyme prodrug therapy), GDEPT (gene-directed enzyme prodrug therapy), VDEPT (virus-directed enzyme prodrug therapy), GPAT (genetic prodrug activation therapy) and PDEPT (polymer-directed enzyme prodrug therapy) approaches, their clinical trials, advantages, disadvantages and perspectives.
Resumo:
ErbB receptors (EGFR, ErbB2, ErbB3 and ErbB4) are growth factor receptors that regulate signals of cell differentiation, proliferation, migration and survival. Inappropriate activation of these receptors is associated with the development and severity of many cancers and has prognostic and predictive value in cancer therapy. Drugs, such as therapeutic antibodies, targeted against EGFR and ErbB2, are currently used in therapy of breast, colorectal and head and neck cancers. The role of ErbB4 in tumorigenesis has remained relatively poorly understood. Alternative splicing produces four different isoforms of one ErbB4 gene. These isoforms (JM-a, JM-b, CYT-1 and CYT-2) are functionally dissimilar and proposed to have different roles in carcinogenesis. The juxtamembrane form JM-a undergoes regulated intramembrane proteolysis producing a soluble receptor ectodomain and an intracellular domain that translocates into the nucleus and regulates transcription. Nuclear signaling via JM-a isoform stimulates cancer cell proliferation. This study aimed to develop antibodies targeting the proposed oncogenic ErbB4 JM-a isoform that show potential in inhibiting ErbB4 dependent tumorigenesis. Also, the clinical relevance of ErbB4 shedding in cancer was studied. The currently used monoclonal antibody trastuzumab, targeting ErbB2, has shown efficacy in breast cancer therapy. In this study novel tissues with ErbB2 amplification and trastuzumab sensitivity were analyzed. The results of this study indicated that a subpopulation of breast cancer patients demonstrate increased shedding and cleavage of ErbB4. A JM-a isoform-specific antibody that inhibited ErbB4 shedding and consequent activation of ErbB4 had anti-tumor activity both in vitro and in vivo. Thus, ErbB4 shedding associates with tumor growth and specific targeting of the cleavable JM-a isoform could be considered as a strategy for developing novel ErbB-based cancer drugs. In addition, it was demonstrated that ErbB2 amplification is common in intestinal type gastric cancers with poor clinical outcome. Trastuzumab inhibited growth of gastric and breast cancer cells with equal efficacy. Thus, ErbB2 may be a useful target in gastric cancer.