974 resultados para monitoring framework
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Several projects in the recent past have aimed at promoting Wireless Sensor Networks as an infrastructure technology, where several independent users can submit applications that execute concurrently across the network. Concurrent multiple applications cause significant energy-usage overhead on sensor nodes, that cannot be eliminated by traditional schemes optimized for single-application scenarios. In this paper, we outline two main optimization techniques for reducing power consumption across applications. First, we describe a compiler based approach that identifies redundant sensing requests across applications and eliminates those. Second, we cluster the radio transmissions together by concatenating packets from independent applications based on Rate-Harmonized Scheduling.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a single device. This situation is particularly critical for small embedded devices used in consumer electronics, telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related to weight, space, and energy consumption, these systems are typically built using microprocessors with lower processing power and limited resources. The CooperatES framework has recently been proposed to tackle these challenges, allowing resource constrained devices to collectively execute services with their neighbours in order to fulfil the complex Quality of Service (QoS) constraints imposed by users and applications. In order to demonstrate the framework's concepts, a prototype is being implemented in the Android platform. This paper discusses key challenges that must be addressed and possible directions to incorporate the desired real-time behaviour in Android.
Resumo:
ARINC specification 653-2 describes the interface between application software and underlying middleware in a distributed real-time avionics system. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads and can communicate with other processes in the system. In this work we develop compositional techniques for automated scheduling of such partitions and processes. At present, system designers manually schedule partitions based on interactions they have with the partition vendors. This approach is not only time consuming, but can also result in under utilization of resources. In contrast, the technique proposed in this paper is a principled approach for scheduling ARINC-653 partitions and therefore should facilitate system integration.
Resumo:
Operational Modal Analysis is currently applied in structural dynamic monitoring studies using conventional wired based sensors and data acquisition platforms. This approach, however, becomes inadequate in cases where the tests are performed in ancient structures with esthetic concerns or in others, where the use of wires greatly impacts the monitoring system cost and creates difficulties in the maintenance and deployment of data acquisition platforms. In these cases, the use of sensor platforms based on wireless and MEMS would clearly benefit these applications. This work presents a first attempt to apply this wireless technology to the structural monitoring of historical masonry constructions in the context of operational modal analysis. Commercial WSN platforms were used to study one laboratory specimen and one of the structural elements of a XV century building in Portugal. Results showed that in comparison to the conventional wired sensors, wireless platforms have poor performance in respect to the acceleration time series recorded and the detection of modal shapes. However, for frequency detection issues, reliable results were obtained, especially when random excitation was used as noise source.
Resumo:
Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
In this paper we propose a framework for the support of mobile application with Quality of Service (QoS) requirements, such as voice or video, capable of supporting distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.
Resumo:
The objective of every wind energy producer is to reduce operational costs associated to the production as a way to increase profits. One other issue that must be looked carefully is the equipment maintenance. Increase the availability of wind turbines by reducing the downtime associated to failures is a good strategy to achieve the main goal of increase profits. As a way to help in the definition of the best maintenance strategies, condition monitoring systems (CMS) have an important role to play. Informatics tools to make the condition monitoring of the wind turbines were developed and are now being installed as a way to help producers reducing the operational costs. There are a lot of developed systems to do the monitoring of a wind turbine or the whole wind park, in this paper will be made an overview of the most important systems.
Resumo:
Considering that recent european high-speed railway system has a traction power system of kV 50 Hz, which causes electromagnetic emission for the outside world, it is important to dimension the railway system emissions, using a frequency/distance dependent propagation model. This paper presents an enhanced theoretical model for VLF to UHF propagation, railway system oriented. It introduces the near field approach (crucial in low frequency propagation) and also considers the source characteristics and type of measuring antenna. Simulations are presented, and comparisons are set with earlier far field models. Using the developed model, a real case study was performed in partnership with Refer Telecom (portuguese telecom operator for railways). The new propagation model was used in order to predict the future high-speed railway electromagnetic emissions in the Lisbon north track. The results show the model's prediction capabilities and also its applicability to realistic scenarios.
Resumo:
Waste oil recycling companies play a very important role in our society. Competition among companies is tough and process optimization is essential for survival. By equipping oil containers with a level monitoring system that periodically reports the level and alerts when it reaches the preset threshold, the oil recycling companies are able to streamline the oil collection process and, thus, reduce the operation costs while maintaining the quality of service. This paper describes the development of this level monitoring system by a team of four students from different engineering backgrounds and nationalities. The team conducted a study of the state of the art, draw marketing and sustainable development plans and, finally, designed and implemented a prototype that continuously measures the container content level and sends an alert message as soon as it reaches the preset capacity.
Resumo:
Real-time scheduling usually considers worst-case values for the parameters of task (or message stream) sets, in order to provide safe schedulability tests for hard real-time systems. However, worst-case conditions introduce a level of pessimism that is often inadequate for a certain class of (soft) real-time systems. In this paper we provide an approach for computing the stochastic response time of tasks where tasks have inter-arrival times described by discrete probabilistic distribution functions, instead of minimum inter-arrival (MIT) values.