969 resultados para microcapsule resina melammina-formaldeide
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The increasing demand for natural dyes in place of synthetic ones is justified by the non-toxicity or low toxicity of the former. The synthetic dyes are associated with diseases like cancer as well as when released in the environment takes longer to degrade and the intermediates could be still more toxic. The Annatto (Bixa Orellana L.) is a carotenoid and one of the more important natural dyes used in the food industry. In the form of dye, it represents nearly 70% of the world natural dye production and 90% in Brazil. In the present work, annatto seeds were used of the species peruana paulista, which had nearly 2.1% of bixin. The process of dye extraction with ethyl alcohol showed 4% of dye in the form of powder with particle diameter of 28mm. The extraction process did not alter the chemical composition of the dye, which was confirmed by the electronic spectrum of absorption. Dyeings were carried out with different mordents to study the total colour difference as well as the wash fastness properties and friction fastness properties under wet and dry conditions. The samples treated with copper sulphate showed colour difference but at the same time showed better fastness results. The samples treated with resin (no formaldehyde) did not alter the colour significantly still better the fastness properties. From the results, it could be stated that the resin could be an alternative for heavy metallic mordents
Resumo:
The city of Natal comprises an area of about 170 km² (65,63 squares miles). The Dunas-Barreiras Aquifer is the most important reservoir of the coastal basin of RN. It is being responsible for the water supplying of about 70% of the population, however, due to the sewage disposal system by cesspools and drains, it is presently affected in a great extent by nitrates contamination. Thus, the present work proposes to research the utilization of contaminated water by nitrates of this fountainhead and find cost of the potable water through the ionic exchange technology. This technology consists in the removal of mineral salts by the exchange of cations for one ion of hydrogen (H+), through the passage of water by cationic resin bed and, secondly, by the exchange of the anions for hydroxyl ions (OH-) through a anionic resin bed. The obtained results have showed the waters derived from fountains, big water holes and shallow wells were microbiologically contaminated, while the waters derived from deep wells (above 70 m 76,58 yards) were free of contamination. Thus, only these ones are suitable to the use of ionic technology. The experiments were conducted with the resin IMAC-HP-555 such as kinetic, thermodynamic, and adsorption by fixed bed studies, being obtained several project variables for the experimental column, as follow: work temperature of 25oC; resin maximum capacity maximum e mean of adsorption ==0,01692 g NO3-1/g R e 0,0110 g NO3-1/g R, respectively. On the experimental column were performed breakthrough tests which pointed for an average ideal average speed of work of 13.2 m / h, with an average efficiency of 45% of adsorption, an optimal concentration of NaCl desorption of 8%, and an ideal desorption time of 80 minutes for the equilibrium conditions of water from the Dunas-Barreiras aquifer. Scale projection for ion-exchange column for denitrification, for these variables, using a computer modeling programme, to project the column of ion exchange ROREX-420/2000, obtained a cost for the drinking water denitrified by this system of R$ 0,16 / m3
Resumo:
Expanded Bed Adsorption plays an important role in the downstream processing mainly for reducing costs as well as steps besides could handling cells homogenates or fermentation broth. In this work Expanded Bed Adsorption was used to recover and purify whey proteins from coalho cheese manufacture using Streamline DEAE and Streamline SP both ionic resins as well as a hydrophobic resin Streamline Phenyl. A column of 2.6 cm inner diameter with 30 cm in height was coupled to a peristaltic pump. Hydrodynamics study was carried out with the three resins using Tris-HCl buffer in concentration of 30, 50 and 70 mM, with pH ranging from 7.0 to 8.0. In this case, assays of the expansion degree as well as Residence Time Distribution (RTD) were carried out. For the recovery and purification steps, a whey sample of 200 mL, was submitted to a column with 25mL of resin previously equilibrated with Tris/HCl (50 mM, pH 7.0) using a expanded bed. After washing, elution was carried out according the technique used. For ionic adsorption elution was carried out using 100 mL of Tris/HCl (50 mM, pH 7.0 in 1M NaCl). For Hydrophobyc interaction elution was carried out using Tris/HCl (50 mM, pH 7.0). Adsorption runs were carried out using the three resins as well as theirs combination. Results showed that for hydrodynamics studies a linear fit was observed for the three resins with a correlation coefficient (R2) about 0.9. In this case, Streamline Phenyl showed highest expansion degree reaching an expansion degree (H0/H) of 2.2. Bed porosity was of 0.7 when both resins Streamline DEAE and Streamline SP were used with StremLine Phenyl showing the highest bed porosity about 0.75. The number of theorical plates were 109, 41.5 and 17.8 and the axial dipersion coefficient (Daxial) were 0.5, 1.4 and 3.7 x 10-6 m2/s, for Streamline DEAE, Streamline SP and Streamline Phenyl, respectively. Whey proteins were adsorved fastly for the three resins with equilibrium reached in 10 minutes. Breakthrough curves showed that most of proteins stays in flowthrough as well as washing steps with 84, 77 and 96%, for Streamline DEAE, Streamline SP and Streamline Phenyl, respectively. It was observed protein peaks during elution for the three resins used. According to these peaks were identified 6 protein bands that could probably be albumin (69 KDa), lactoferrin (76 KDa), lactoperoxidase (89 KDa), β-lactoglobulin (18,3 KDa) e α-lactoalbumin (14 KDa), as well as the dimer of beta-lactoglobulin. The combined system compound for the elution of Streamline DEAE applied to the Streamline SP showed the best purification of whey proteins, mainly of the α-lactoalbumina
Resumo:
Biosurfactants are molecules produced by microorganisms mainly bacteria as Pseudomonas and Bacillus. Among the biosurfactants, rhamnolipids play an important role due to their tensoactive as well as emulsifying properties. Besides can be produced in a well consolidated way the production costs of biosurfactants are quite expansive mainly if downstream processing is goning to be considered. Actually, attention has been given to identification of biosurfactants as well as optimization of its fermentative processes including downstream ones. This work deals with the development of strategies to recovery and purification of rhamnolipids produced by Pseudomonas aeruginosa P029-GVIIA using sugar-cane molasses as substrate. Broth free of cells was used in order to investigate the best strategies to recovery and purification produced by this system. Between the studied acids (HCl and H2SO4) for the acid precipitation step, HCl was the best one as has been showed by the experimental design 24. Extraction has been carried out using petroleum ether and quantification has been done using the thioglycolic acid method. Adsorption studies were carried out with activated carbon in a batch mode using a 24 experimental design as well as combined with an hydrophobic resin Streamline Phenyl aiming to separate the produced biosurfactant. Biosurfactant partial identification was carried out using High Performance Liquid Chromatography (HPLC). Experiments in batch mode showed that adsorption has been controlled mainly by pH and temperature. It was observed a reduction of 41.4% for the liquid phase and the solid phase it was possible to adsorb up to 15 mg of rhamnolipd/g of activated carbon. The kinetics of adsorption has been well fitted to a pseudo-first order reaction with velocity constant (k1) of 1.93 x 10-2 min-1. Experiments in packed bed ranging concentration on eluent (acetone) has been shown the highest recovery factor of 98% when pure acetone has been used. The combined effect if using activated carbon with an hydrophobic resin Streamline Phenyl has been shown successful for the rhamnolipids purification. It has been possible to purify a fraction of the crude broth with 98% of purity when the eluted of activated carbon packed bed was used with pure acetone
Resumo:
A superfície interna das bisnagas fabricadas com alumínio não revestido e revestido com resina epóxi, utilizadas para acondicionar cremes, pomadas, géis, etc., foram avaliadas quimicamente e por métodos microbiológicos correlacionados com a aderência de microrganismos. A prova da porosidade e da resistência à remoção da resina foi observada por meio do microscópio eletrônico de varredura (Topcon FM300) e estereoscópio Leica (MZ12) acoplado a Sistema de Digitalização de Imagens. Para avaliar a ação dos microrganismos foram utilizados corpos-de-prova esterilizados (discos de 10mm de diâmetro), imersos em caldo Mueller Hinton (Difco) e colocados em tubos de polipropileno com tampa de rosca (Corning). Foram inoculados tubos com meio de cultura para cada uma das suspensões bacterianas (10(9)UFC/mL) de Streptococcus agalactiae, Staphylococcus aureus, Acinetobacter lwoffii e Candida albicans, incubados a 37°C, sob agitação constante durante 12 dias. O meio de cultura era trocado a cada 3 dias. Após esse período, os corpos-de prova foram removidos, processados e observados em microscópio eletrônico de varredura JEOL-JSM (T330A). A observação por meio do microscopio eletrônico de varredura mostrou a aderência e a formação de biofilme sobre a superfície de alumínio não revestido e revestido com resina epóxi.
Resumo:
The groundwater represents the most important freshwater supply of planet. Dailly, in all world a great amount of toxic and genotoxic material reaches the aquatic systems, mainly the aquifers. The Barreiras aquifer through of five water wells is responsible for the supplying of Universidade Federal do Rio Grande do Norte (UFRN). All water wells are polluted with nitrate and some heavy metals, two of them were disabled. The genotoxicity of groundwater samples from Barreiras Aquifer in UFRN was assessed using the Allium cepa test, the Ames test and the Salmonella typhymurium microsuspension test (Kado test). For the Allium cepa test the influence of the groundwater samples collected on macroscopic (root length, colour and form) and microscopic (root tip mitotic index, chromosome aberrations and micronucleus) parameters was examined. All water samples caused a significant increase of the chromosome and mitotic aberration frequency and reduction on the rooth growth compared to negative control. Bridges and chromosome stickness were the most frequent kind of aberration in dividing cells. Furthermore, breaks were also observed. No significant increase in the number of micronuclei was found in relation to the negative controls. For Ames test were used the Salmonella typhymurium strains TA98 and TA100 without metabolic activation, applying the direct method. Prior to the Kado test, organic fractions from the water samples were obtained through XAD resin concentration. The mutagenicity organic extracts were evaluated by Kado test using TA98 and TA100 strains, in the absence and presence of S9 mix (metabolic activation). The concentrations of seven heavy metal ions were measured in water samples, but only Ni, Cu and Cr levels exceeded the permissible maximum concentration for the natural reservoirs. The results obtained for mutagenic activity using the Ames test were negative in all raw water samples analyzed. Positive results in XAD4 extracts of water samples were obtained for TA98 in the presence of S9 mix for two stations. Concentrations of heavy metals and nitrate can be correlated with the toxicity and genotoxicity of water analyzed. The mutagenic effect detected with TA98 strain suggested that organic compounds (after metabolization) are involved with the mutagenicity detected in the samples analyzed. The data set obtained in this work indicated the presence of at least two classes of mutagens: organic and inorganic compounds
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A utilização de compósitos poliméricos na fabricação de aeronaves vem sendo cada vez mais intensa. em função disso, a possibilidade de ocorrer falhas em serviço de um componente fabricado em compósito polimérico torna-se cada vez maior. A análise de falhas de materiais compósitos ainda é um tema pouco explorado, principalmente no Brasil, porém vem tornando-se cada vez mais importante em apoio à área de prevenção e investigação de acidentes aeronáuticos. Este trabalho teve como objetivo a caracterização de fraturas em laminados unidirecionais de fibra de carbono de módulo intermediário com sistema de resina epóxi modificada, tipo 8552, em resistência ao cisalhamento interlaminar nas condições ambiente e saturado de umidade em câmara higrotérmica. A análise fractográfica no plano de falha dos laminados foi realizada por microscopias óptica e eletrônica de varredura. A comparação dos resultados mostrou que o condicionamento higrotérmico afetou significativamente a região de interface da resina sem alterar a adesão interfacial fibra/resina. Os aspectos de fratura presentes na região de resina, como cristas de galo e escarpas, e do reforço foram detalhados, podendo-se assim estabelecer a direção de propagação da trinca e caracterizar o modo de falha, por ser do tipo misto (arrancamento e cisalhamento simultaneamente).
Resumo:
Due to the need of increasing production in reservoirs that are going through production decline, methods of advanced recovery have frequently been used in the last years, as the use of conventional methods has not been successful in solving the problem of oil drifting. In this work, the efficiency of different microemulsionated systems in the flow of oil from cores from Assu and Botucatu formations. Regarding drifting tests, cores were calcinated at a temperature of 1000°C, for 18 hours, with the aim of eliminating any organic compound present in it, increasing the resultant permeability. Following, the cores were isolated with resin, resulting in test specimens with the following dimensions: 3.8 cm of diameter and 8.7 cm of length. Cores were saturated with brine, composed of aqueous 2 wt % KCl, and oil from Guamaré treatment station (Petrobras/RN). A pressure of 20 psi was used in all tests. After core saturation, brine was injected again, followed by oil at constant flow rate. The system S3 - surfactant (anionic surfactant of short chain), isoamillic alcohol, pine oil, and water - presented the best drift efficiency, 81.18%, while the system S1E commercial surfactant, ethyl alcohol, pine oil, and distilled water presented low drift efficiency, 44,68%
Resumo:
In this work, the plant species Copernicia prunifera (Miller) H. E. Moore (carnauba), naturally occurring which prevails in the northeast region of Brazil was the subject of studies aiming its use as external coating of pipelines used in petroleum industry. The part of the plant worked were the leaves, also called straw, which were coated with resinous material. For this purpose, it was necessary to evaluate the effectiveness of the use of acrylic resins in the straw carnauba coating. The properties of the untreated carnauba straw and chemically treated with sodium hydroxide, hexane and carbon tetrachloride were investigated by ATRFTIR, SEM and thermal analysis. The first two techniques showed that treatment with solvents has caused major changes in the straw surface, while the thermal analysis indicated that the sodium hydroxide caused variations in thermal stability of straw constituents. Water absorption measurements showed that treatments have accelerated the absorption process and the reduction of contact angle values for treated samples with solvents indicated higher hidrophilicity of straw. The tensile tests showed lower values of elastic modulus and tensile strength for treated samples. Furthermore, coatings using pure commercial resins A and B as well as the formulations with clay were applied in straw and they were examined once again through thermal analysis, water absorption measurements, contact angle and mechanical tests. To analyze the effect of heat ageing, samples were subjected to tensile tests again in order to assess its resistance. The results showed that the resins/clay formulations increased thermal stability of straw, they promoted a good impermeabilization and caused significant decrease in the values of elastic modulus and tensile strength. Evaluating the ageing effect on the mechanical properties, it has been showed good recovery to the coated straw with the formulations A 60 and A 80% in modulus and tensile strength values and elongation at break values have remained very close. It is thus concluded that the carnauba straw can be used as a coating of pipelines with significant cost savings, since there is no need for pretreatment for its use and shows itself as a viable biotechnology alternative, contributing to the quality of coatings material and environment preservation.
Resumo:
Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing watersoluble oligopeptides. At present, few reports have been described using this strategy. Therefore, the aim of this thesis was to immobilize proteases applying different methods (Immobilization by covalent bound, entrapment onto polymeric gels of PVA and immobilization on glycidil metacrylate magnetic nanoparticles) in order to produce water-soluble oligopeptides derived from lysine. Three different proteases were used: trypsin, α-chymotrypsin and bromelain. According to immobilization strategies associated to the type of protease employed, trypsin-resin systems showed the best performance in terms of hydrolytic activity and oligopeptides synthesis. Hydrolytic activities of the free and immobilized enzymes were determined spectrophotometrically based on the absorbance change at 660 nm at 25 °C (Casein method). Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by 1H-NMR analysis. Trypsin was covalently immobilized onto four different resins (Amberzyme, Eupergit C, Eupergit CM and Grace 192). Maximum yield of bound protein was 92 mg/g, 82 mg/g and 60 mg/g support for each resin respectively. The effectiveness of these systems (Trypsin-resins) was evaluated by hydrolysis of casein and synthesis of water-soluble oligolysine. Most systems were capable of catalyzing oligopeptide synthesis in aqueous medium, albeit at different efficiencies, namely: 40, 37 and 35% for Amberzyme, Eupergit C and Eupergit CM, respectively, in comparison with free enzyme. These systems produced oligomers in only 1 hour with DPavg higher than free enzyme. Among these systems, the Eupergit C-Trypsin system showed greater efficiency than others in terms of hydrolytic activity and thermal stability. However, this did not occur for oligolysine synthesis. Trypsin-Amberzyme proved to be more successful in oligopeptide synthesis, and exhibited excellent reusability, since it retained 90% of its initial hydrolytic and synthetic activity after 7 reuses. Trypsin hydrophobic interactions with Amberzyme support are responsible for protecting against strong enzyme conformational changes in the medium. In addition, the high concentration of oxirane groups on the surface promoted multi-covalent linking and, consequently, prevented the immobilized enzyme from leaching. The aforementioned results suggest that immobilized Trypsin on the supports evaluated can be efficiently used for oligopeptides synthesis in aqueous media