986 resultados para microbial pest control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

All research steps, developed from 1995 to 2000, to synthesize the sex pheromone of Ecdytolopha aurantiana (Lima, 1927) are described, in order to monitoring this pest that causes losses in the order of 50 million dollars per year to citriculture in the State of São Paulo. The basic researches conducted are described, including the development of an artificial diet for the insect, the study of its temperature and humidity requirements, behavioral studies, and synthesis of the male-attracting substance up to the formulation and distribution of the pheromone to the grower, by means of its commercialization. It is a case of success, at a cost of 50 thousand dollars, involving inter- and multidisciplinary researches, which can be adopted to other insect pests in the country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties. This also applies to species collected for potential use in biological control. Recent applications of access and benefit sharing principles have already made it difficult or impossible to collect and export natural enemies for biological control research in several countries. If such an approach is widely applied it would impede this very successful and environmentally safe pest management method based on the use of biological diversity. The International Organization for Biological Control of Noxious Animals and Plants has, therefore, created the "Commission on Biological Control and Access and Benefit Sharing". This commission is carrying out national and international activities to make clear how a benefit sharing regime might seriously frustrate the future of biological control. In addition, the IOBC Commission members published information on current regulations and perceptions concerning exploration for natural enemies and drafted some 30 case studies selected to illustrate a variety of points relevant to access and benefit sharing. In this article, we summarize our concern about the effects of access and benefit sharing systems on the future of biological control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental test of rainfall as a control agent of Glycaspis brimblecombei Moore (Hemiptera, Psyllidae) on seedlings of Eucalyptus camaldulensis Dehn (Myrtaceae). Glycaspis brimblecombei is one the greatest threats to eucalyptus plantations in Brazil. The effects of rainfall to reduce the abundance of lerp of Glycaspis brimblecombei on experimentally infested seedlings of Eucalyptus camaldulensis were assessed. The number of lerps on the adaxial and abaxial surfaces of every leaf of 60 seedlings was recorded, before and after submission to the following treatments: "artificial rain", "leaf wetting" and control. A drastic reduction in lerp abundance per plant was observed after the treatments "leaf wetting" and artificial rain (F = 53.630; p < 0.001), whereas lerp abundance remained roughly constant in the control treatment along the experiment (F = 1.450; p = 0.232). At the end of the experiment, lerp abundance was significantly lower in both the "artificial rain" and "leaf wetting" than in the control treatment. Two days of rainfall simulation were sufficient to decrease more than 50% of the lerp population, with almost 100% of effectiveness after 5 days of experiment. Our results indicate that lerp solubilization and mechanical removal by water are potential tools to the population regulation of G. brimblecombei on E. camaldulensis seedlings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thousands of chemical compounds enter the natural environment but many have unknown effects and consequences, in particular at low concentrations. This thesis work contributes to our understanding of pollution effects by using bacteria as test organisms. Bacteria are important for this question because some of them degrade and transform pollutants into less harmful compounds, but secondly because they themselves can be inhibited in their reproduction by exposure to toxic compounds. When inhibitory effects occur this may change the composition of the microbial com¬munity in the long run, leading to altered or diminished ecosystem services by those communities. As a result chemicals of anthropogenic origin may accumulate and per¬sist in the environment, and finally, affect higher organisms as well. In addition to acquiring basic understanding of pollutant effects at low concentrations on bacterial communities an applied goal of this thesis work was to develop bacteria-based tests to screen new organic chemicals for toxicity and biodégradation. In the first part of this work we developed a flow cytometry-based assay on SYT09 plus ethidium-bromide or propidium-iodide stained cells of Pseudomonas ûuorescens exposed or not to a variety of pollutants under oligotrophic growth conditions. Flow cytometry (FC) allows fast and accurate counting of bacterial cells under simul¬taneous assessment of their physiological state, in particular in combination with different fluorescent dyes. Here we employed FC and fluorescent dyes to monitor the effect that pollutants may exert on Pseudomonas ûuorescens SV3. First we designed an oligotrophic growth test, which enabled us to follow population growth at low densities (104 - 10 7 cells per ml) using 0.1 mM sodium acetate as carbon source. Cells in the oligotrophic milieu were then exposed or not to a variety of common pollutants, such as 2-chlorobiphenyl (2CBP), naphthalene (NAH), 4-chlorophenol (4CP), tetradecane (TD), mercury chloride (HgCl2) or benzene, in different dosages. Exposed culture samples were stained with SYT09 (green fluorescent dye binding nucleic acids, generally staining all cells) in combination with propidium iodide (PI) or ethidium bromide (EB), both dyes being membrane integrity indicators. We ob- served that most of the tested compounds decreased population growth in a dosage- dependent manner. SYT09/PI or SYT09/EB staining then revealed that chemical exposure led to arisal of subpopulations of live and injured or dead cells. By modeling population growth on the total cell numbers in population or only the subpopulation of live cells we inferred that even in stressed populations live cells multiply at rates no different to unexposed controls. The net decrease in population growth would thus be a consequence of more and more cells being not able to multiply at all, rather than all cells multiplying at slower rates. In addition, the proportion of injured cells correlated to the compound dosage. We concluded that the oligotrophic test may be useful to asses toxicity of unknown chemicals on a variety of model bacteria. Mul¬tiple tests can be run in parallel and effects are rapidly measured within a period of 8 hours. Interestingly, in the same exposure tests with P. fluorescens SV3 we observed that some chemicals which did not lead to a reduction of net population growth rates did cause measurable effects on live cells. This was mainly observed in cells within the live subpopulation as an increase of the EB fluorescence signal. We showed that SYT09/EB is a more useful combination of dyes than SYT09/PI because PI fluorescence tend to increase only when cells are effectively dead, but not so much in live cells (less then twofold). In contrast, EB geometric mean fluorescence in live cells increased up to eightfold after exposure to toxic compounds. All compounds even at the lowest concentration caused a measurable increase in EB geometric mean fluorescence especially after 2 h incubation time. This effect was found to be transient for cells exposed to 2CBP and 4CP, but chronic for cells incubated with TD and NAH (ultimately leading to cell death). In order to understand the mechanism underlying the observed effects we used known membrane or energy uncouplers. The pattern of EB signal increase in chemical-exposed populations resembled mostly that of EDTA, although EB fluorescence in EDTA-treated or pasteurized cells was even higher than after exposure to the four test chemicals. We conclude that the ability of cells to efflux EB under equilibrium conditions is an appropriate measure for the potential of a chemical to exert toxicity. Since most bacterial species possess efflux systems for EB that all require cellular energy, our test should be more widely relevant to infer toxicity effects of chemical exposure on the physiological status of the bacterial cell. To better understand the effect of toxicant exposure on efflux defense systems, we studied 2-hydroxybiphenyl toxicity to Pseudomonas azeiaica HBP1. We showed that 2-HBP exerts toxicity even to P. azelaica HBP1, but only at concentrations higher than 0.5 mM. Above this concentration transient loss of membrane polarization and integrity occurred, which we conclude from staining of growing cells with fluorescent dyes. Cells finally recover and resume growth on 2HBP. The high resistance of P. azelaica HBP1 to 2-HBP was found to be the result of an efficient MexABOprM- type efflux pump system counteracting passive influx of this compound into the membrane and cellular interior. Mutants with disrupted mexA, mexB and oprM genes did no longer grow on 2-HBP at concentrations above 100 μΜ, whereas below this concentration we found 2-HBP-concentration dependent decrease of growth rate. The MexAB-OprM system in P. azeiaica HBP1 is indeed an efflux pump for ethidium bromide as well. By introducing gfp reporter fusions responsive to intracellular 2- HBP concentrations into HBP1 wild-type or the mutants we demonstrated that 2HBP enters into the cells in a similar way. In contrast, the reporter system in the wild-type cells does not react to 2-HBP at an outside concentration of 2.4 μΜ, whereas in mutant cells it does. This suggests that wild-type cells pump 2-HBP to the outside very effectively preventing accumulation of 2-HBP. 2HBP metabolism, therefore, is not efficient enough to lower the intracellular concentration and prevent toxicity. We conclude that P. azelaica HBP1 resistance to 2-HBP is mainly due to an efficient efflux system and that 2HBP in high concentrations exerts narcotic effects on the bacterial membrane. In the part of this thesis, we investigated the possibilities of bacteria to degrade pollutants at low concentrations (1 mg per L and below). As test components we used 2-hydroxybiphenyl, antibiotics and a variety of fragrances, many of which are known to be difficult to biodegrade. By using accurate counting of low numbers of bacterial cells we could demonstrate that specific growth on these compounds is possible. We demonstrated the accuracy of FC counting at low cell numbers (down to 103 bacterial cells per ml). Then we tested whether bacterial population growth could be specifically monitored at the expense of low substrate concentrations, us¬ing P. azelaica HBP1. A perfect relationship was found between growth rate, yield and 2-HBP concentrations in the range of 0.1 up to 5 mg per L. Mixing P. azelaica within sludge, however, suggested that growth yields in a mixed community can be much lower than in pure culture, perhaps because of loss of metabolic intermediates. We then isolated new strains from activated sludge using 2-HBP or antibiotics (Nal, AMP, SMX) at low concentrations (0.1-1 mg per L) as sole carbon and energy sub¬strate and PAO microdishes. The purified strains were then examined for growth on their respective substrate, which interestingly, showed that all strains can not with¬stand higher than 1 or 10 mg per L concentrations of target substrate. Thus, bacteria must exist that contribute to compound degradation at low pollutant concentrations but are inhibited at higher concentrations. Finally we tested whether specific biomass growth (in number of cells) at the expense of pollutants can also be detected with communities as starting material. Hereto, we focused on a number of fragrance chemicals and measured community biomass increase by flow cytometry cell counting on two distinct starter communities: (i) diluted Lake Geneva water, and dilute activated sludge from a wastewater treatment plant. We observed that most of the test compounds indeed resulted in significant biomass increase in the starter community compared to a no-carbon added control, but activated sludge and lake Geneva water strongly differed (almost mutually ex¬clusive) in their capacity to degrade the test chemicals. In two cases for activated sludge the same type of microbial community developed upon compound exposure, as concluded from transcription fragment length polymorphism analysis on community purified and PCR amplified 16S rRNA gene fragments. To properly test compound biodegradability it is thus important to use starter communities of different origin. We conclude that FC counting can be a valuable tool to screen chemicals for their biodegradability and toxicity. - Des milliers de produits chimiques sont libérés dans l'environnement mais beaucoup ont des effets inconnus, en particulier à basses concentrations. Ce travail de thèse contribue à notre comprehension des effets de la pollution en utilisant des bacteries comme des organismes-tests. Les bacteries sont importantes pour etudier cette ques¬tion car certaines d'entre elles peuvent degrader ou transformer les polluants, mais également parce qu'elles-mmes peuvent tre inhibees dans leur reproduction après avoit ete exposees à ces composes toxiques. Quand des effets inhibiteurs ont lieu, la composition de la communauté microbienne peut tre changee à long terme, ce qui mène à une reduction du service d'ecosystème offert par ces communautés. En consequence, après leur liberation dans l'environnement, les produits chimiques d'origine anthropogenique peuvent soit s'y accumuler et per¬sister, exerant ainsi des effets encore inconnus sur les organismes vivants. En plus d'acquérir des connaissances de base sur les effets des polluants à basses concentra¬tions sur les communautés microbiennes, un but applique de cette thèse était de développer des tests bases sur les bacteries afin d'identifier de nouveau composes pour leur toxicité ou leur biodégradation. Dans la première partie de ce travail, nous avons developpe un test base sur la cytometrie de flux (FC) sur des cellules de Pseudomonas fluorescens colorees par du bromure d'ethidium ou de l'iodure de propidium et exposees ou non à une palette de polluants sous des conditions de croissance oligotrophique. La cytometrie de flux est une technique qui connaît de nombreuses applications dans la microbiologie environ¬nementale. Cela est principalement du au fait qu'elle permet un comptage rapide et precis ainsi que l'évaluation de l'état physiologique, en particulier lorsqu'elle est combinée h des colorations fluorescentes. Ici, nous avons utilise la technique FC et des colorants fluorescents afin de mesurer l'effet que peuvent exercer certains pollu¬ants sur Pseudomonas ûuorescens SV3 . D'abord nous avons conu des tests oligo- trophiques qui nous permettent de suivre la croissance complète de cellules en culture h des densites faibles (104 -10 7 cellules par ml), sur de l'acetate de sodium à 0.1 mM, en presence ou absence de produits chimiques (2-chlorobiphenyl (2CBP), naphthalène (NAH), 4-chlorophenol (4CP), tetradecane (TD), chlorure de mercure(II) (HgCl2)) à différentes concentrations. Afin de montrer le devenir des bacteries tant au niveau de la cellule individuelle que celui de la population globale, après exposition à des series de composes chimiques, nous avons compte les cellules colorees avec du SYT09 (col¬orant fluorescent vert des acides nucléiques pour la discrimination des cellules par rapport au bruit de fond) en combinaison avec l'iodure de propidium (PI) ou le bromure d'ethidium (EB), indicateurs de l'intégrité de la membrane cellulaire avec FC. Nous avons observe que de nombreux composes testes avaient un effet sur la croissance bacterienne, resultant en une baisse du taux de reproduction de la pop¬ulation. En outre, la double coloration que nous avons utilisee dans cette etude SYT09/PI ou SYT09/EB a montre que les produits chimiques testes induisaient une reponse heterogène des cellules dans la population, divisant celle-ci en sous- populations "saine", "endommagee" ou "morte". Les nombres de cellules à partir du comptage et de la proportion de celles "saines" et "endommagees/mortes" ont ensuite ete utilises pour modeliser la croissance de P. ûuorescens SV3 exposee aux produits chimiques. La reduction nette dans la croissance de population est une consequence du fait que de plus en plus de cellules sont incapables de se reproduire, plutt que du fait d'une croissance plus lente de l'ensemble de la population. De plus, la proportion de cellules endommagees est correllee au dosage du compose chimique. Les résultats obtenus nous ont permis de conclure que le test oligotrophique que nous avons developpe peut tre utilise pour l'évaluation de la toxicité de produits chimiques sur différents modèles bacteriens. Des tests multiples peuvent tre lances en parallèle et les effets sont mesures en l'espace de huit heures. Par ailleurs, nous en déduisons que les produits chimiques exercént un effet sur la croissance des cellules de P. ûuorescens SV3, qui est heterogène parmi les cellules dans la population et depend du produit chimique. Il est intéressant de noter que dans les mmes tests d'exposition avec P. ûuorescens SV3, nous avons observe que certains composes qui n'ont pas conduit à une reduction du taux de la croissance nette de la population, ont cause des effets mesurables sur les cellule saines. Ceci a ete essentiellement observe dans la portion "saine" des cellules en tant qu'augmentation du signal de la fluorescence de 1ΈΒ. D'abord nous avons montre que SYT09/EB était une com¬binaison de colorants plus utile que celle de SYT09/PI parce que la fluorescence du PI a tendance à augmenter uniquement lorsque les cellules sont effectivement mortes, et non pas dans les cellules saines (moins de deux fois plus). Par opposi¬tion, la fluorescence moyenne de l'EB dans les cellules saines augmente jusqu'à huit fois plus après exposition aux composes toxiques. Tous les composes, mme aux plus basses concentrations, induisent une augmentation mesurable de la fluorescence moy¬enne de 1ΈΒ, plus particulièrement après deux heures d'incubation. Cet effet s'est revele tre transitoire pour les cellules exposees aux 2CNP et 4CP, mais est chro¬nique pour les cellules incubees avec le TD et le NAH (entranant la mort cellulaire). Afin de comprendre les mécanismes qui sous-tendent les effets observes, nous avons utilise des decoupleurs d'energie ou de membrane. L'augmentation du signal EB dans les populations causee par des produits chimiques ressemblait à celle exerce par le chelateur des ions divalents EDTA. Cependant, les intensités du signal EB des cellules exposees aux produits chimiques testees n'ont jamais atteint les valeurs des cellules traitees avec l'EDTA ou pasteurises. Nous en concluons que le test oli- gotrophique utilisant la coloration (SYT09/)EB des cellules exposees ou non à un produit chimique est utile afin d'evaluer l'effet toxique exerce par les polluants sur la physiologie bacterienne. Afin de mieux comprendre la reaction d'un système de defense par pompe à efflux après exposition à une toxine, nous avons étudié la toxicité du 2-hydroxybiphenyl (2-HBP) sur Pseudomonas azeiaica HBP1. Nous avons montre que le 2-HBP exerce une toxicité mme sur HBP1, mais uniquement à des concentrations supérieures à 0.5 mM. Au-dessus de cette concentration, des pertes transitoires d'intégrité et de polarization membranaire ont lieu, comme cela nous a ete montre par coloration des cellules en croissance. Les cellules sont finalement capables de se rétablir et de reprendre leur croissance sur 2-HBP. La forte resistance de P. azeiaica HBP1 h 2-HBP physiologie bacterienne s'est revele tre le résultat d'un système de pompe h efflux de type MexABOprM qui contre-balance l'influx passif de ce compose h travers la membrane. Nous avons montre, en construisant des mutants avec des insertions dans les gènes mexA, mexB and oprM et des fusions avec le gène rapporteur gfp, que l'altération de n'importe quelle partie du système d'efflux conduisait à accroître l'accumulation de 2-HBP dans la cellule, en comparaison avec la souche sauvage HBP1, provoquant une diminution de la resistance au 2-HBP ainsi qu'une baisse du taux de reproduction des cellules. Des systèmes d'efflux similaires sont répandus chez de nombreuses espèces bactériennes. Ils seraient responsables de la resistance aux produits chimiques tels que les colorants fluorescents (bromure d'ethidium) et des antibiotiques. Nous concluons que la resistance de P. azelaica HBP1 à 2-HBP est principalement due à un système d'efflux efficace et que 2-HBP, à des concentrations elevees, exerce un effet deletère sur la membrane bacterienne. En se basant sur le comptage des cellules avec la FC, nous avons developpe ensuite une methode pour evaluer la biodegradabilite de polluants tels que le 2-HBP ainsi que les antibiotiques (acide nalidixique (Nal), ampicilline (AMP) ou sulfamethoxazole (SMX)) à de faibles concentrations lmg par L et moins), par le suivi de la croissance spécifique sur le compose de cultures microbiennes pures et mixtes. En utilisant un comptage precis de faibles quantités de cellules nous avons pu demontrer que la croissance spécifique sur ces composes est possible. Nous avons pu illustrer la precision du comptage par cytometrie de flux à faible quantité de cellules (jusqu'à 10 3 cellules par ml). Ensuite, nous avons teste s'il était possible de suivre dynamiquement la croissance de la population de cellules sur faibles concentrations de substrats, en utilisant P. azelaica HBP1. Une relation parfaite a ete trouvee entre le taux de croissance, le rendement et les concentrations de 2-HBP (entre 0.1 et 5 mg par L). En mélangeant HBP1 à de la boue active, nous avons pu montrer que le rendement en communauté mixtes pouvait tre bien inférieur qu'en culture pure. Ceci étant peut tre le résultat d'une perte d'intermédiaires métaboliques. Nous avons ensuite isole de nouvelles souches à partir de la boue active en utilisant le 2-HBP ou des antibiotiques (Nal, AMP, SMX) h basses concentrations (0.1-1 mg par L) comme seules sources de carbone et d'energie. En combinaison avec ceci, nous avons également utilise des microplaques PAO. Les souches purifiees ont ensuite ete examinees pour leurs croissances sur leurs substrats respectifs. De faon intéressante, toutes ces souches ont montre qu'elles ne pouvaient pas survivre à des concentrations de substrats supérieures à 1 ou 10 mg par L. Ainsi, il existe des bacteries qui contribuent à la degradation de composes à basses concentrations de polluant mais sont inhibes lorsque ces concentrations deviennent plus hautes. Finalement, nous avons cherche à savoir s'il est possible de detecter une croissance spécifique à une biomasse au depend d'un polluant, en partant d'une communauté microbienne. Ainsi, nous nous sommes concentre sur certains composes et avons mesure l'augmentation de la biomasse d'une communauté grce à la cytometrie de flux. Nous avons compte deux communautés de depart distinctes: (i) une dilution d'eau du Lac Léman, et une dilution de boue active d'une station d'épuration. Nous avons observe que la plupart des composes testes ont entrane une augmentation de la biomasse de depart par rapport au control sans addition de source de carbone. Néanmoins, les échantillons du lac Léman et de la station d'épuration différaient largement (s'excluant mutuellement l'un l'autre) dans leur capacité à degrader les composes chimiques. Dans deux cas provenant de la station d'épuration, le mme type de communauté microbienne s'est developpe après exposition aux composes, comme l'a démontré l'analyse TRFLP sur les fragments d'ARN 16S purifie de la communauté et amplifie par PCR. Afin de tester correctement la biodegradabilite d'un compose, il est donc important d'utiliser des communautés de depart de différentes origines Nous en concluons que le comptage par cytometrie de flux peut tre un outil de grande utilité pour mettre en valeur la biodegradabillite et la toxicité des composes chimiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compaction is one of the most destructive factors of soil quality, however the effects on the microbial community and enzyme activity have not been investigated in detail so far. The objective of this study was to evaluate the effects of soil compaction caused by the traffic of agricultural machines on the soil microbial community and its enzyme activity. Six compaction levels were induced by tractors with different weights driving over a Eutrustox soil and the final density was measured. Soil samples were collected after corn from the layers 0-0.10 and 0.10-0.20 m. The compaction effect on all studied properties was evident. Total bacteria counts were reduced significantly (by 22-30 %) and by 38-41 % of nitrifying bacteria in the soil with highest bulk density compared to the control. On the other hand, fungi populations increased 55-86 % and denitrifying bacteria 49-53 %. Dehydrogenase activity decreased 20-34 %, urease 44-46 % and phosphatase 26-28 %. The organic matter content and soil pH decreased more in the 0-0.10 than in the 0.10-0.20 m layer and possibly influenced the reduction of the microbial counts, except denitrifying bacteria, and all enzyme activities, except urease. Results indicated that soil compaction influences the community of aerobic microorganisms and their activity. This effect can alter nutrient cycling and reduce crop yields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To mitigate the impacts of eucalypt monoculture, forestry companies in the Upper Jequitinhonha Valley (MG) have adopted the insertion of strips of native vegetation in-between the commercial plantations. The method used for the creation of these corridors is to allow spontaneous regrowth of native vegetation in areas previously under eucalypt. The objective of this study was to evaluate the effect of cover crops on microbial and soil properties for a detailed description of the restoration process of native vegetation in forest soils of the Jequitinhonha Valley. The treatments were represented by an initial restoration stage (< 4 years) with or without remaining eucalypt and the advanced restoration stage (> 4 years) with or without remaining eucalypt, plus the three controls: commercial eucalypt plantation, Cerrado vegetation and native forest. Soil samples were collected for three consecutive years in the dry and rainy season (August and February, respectively). The microbial activity, regardless of the presence of remaining eucalypt , did not differ among the restoration areas, except for the metabolic quotient (qCO2) in the rainy season of February 2007. At this time, this microbial activity was higher in the advanced restoration stage without eucalypt than initial restoration without eucalypt and advanced restoration with eucalypt. The restoration areas, in general, did not differ from the control: eucalypt plantation and Cerrado either. Compared to the forest, the levels of organic C, microbial C, basal respiration (Rbasal) and hydrolysis of fluorescein diacetate (FDA) in the restoration areas were, in general, lower and did not differ in qCO2 and microbial quotient (qMIC). In general, the soil quality was similar in the initial and advanced restoration stages. Most of the soil and microbial properties in the three years indicated that the restoration areas were most similar to the Cerrado. In the advanced restoration areas without eucalypt compared to Cerrado, the lower Rbasal in the 3rd year and the lower FDA and qMIC and higher qCO2 in the 2nd year indicated that the removal of the remaining eucalypt trees was unfavorable for restoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Evaluation of the quantitative antibiogram as an epidemiological tool for the prospective typing of methicillin-resistant Staphylococcus aureus (MRSA), and comparison with ribotyping. METHODS: The method is based on the multivariate analysis of inhibition zone diameters of antibiotics in disk diffusion tests. Five antibiotics were used (erythromycin, clindamycin, cotrimoxazole, gentamicin, and ciprofloxacin). Ribotyping was performed using seven restriction enzymes (EcoRV, HindIII, KpnI, PstI, EcoRI, SfuI, and BamHI). SETTING: 1,000-bed tertiary university medical center. RESULTS: During a 1-year period, 31 patients were found to be infected or colonized with MRSA. Cluster analysis of antibiogram data showed nine distinct antibiotypes. Four antibiotypes were isolated from multiple patients (2, 4, 7, and 13, respectively). Five additional antibiotypes were isolated from the remaining five patients. When analyzed with respect to the epidemiological data, the method was found to be equivalent to ribotyping. Among 206 staff members who were screened, six were carriers of MRSA. Both typing methods identified concordant of MRSA types in staff members and in the patients under their care. CONCLUSIONS: The quantitative antibiogram was found to be equivalent to ribotyping as an epidemiological tool for typing of MRSA in our setting. Thus, this simple, rapid, and readily available method appears to be suitable for the prospective surveillance and control of MRSA for hospitals that do not have molecular typing facilities and in which MRSA isolates are not uniformly resistant or susceptible to the antibiotics tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated crop-livestock systems (ICLs) are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR), Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC) and soil enzymatic activity in an ICL of soybean (summer) and Brachiaria ruziziensis (winter), with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI): 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively) and a no grazing (NG) control. The microbial characteristics analysed were MBC, microbial respiration (MR), metabolic quotient (qCO2), the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA) hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate) grazing intensity) contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10) contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height) during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20) and no grazing (NG) treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Before planning the large-scale use of nonpathogenic strains of Fusarium oxysporum as biocontrol agents of Fusarium wilt, their behaviour and potential impact on soil ecosystems should be carefully studied as part of risk assessment. The aim of this work was to evaluate the effects of antagonistic F. oxysporum strains, genetically manipulated (T26/6) or not (233/1), on soil microbial biomass and activity. The effects were evaluated, in North-western Italy, in two soils from different sites at Albenga, one natural and the other previously solarized, and in a third soil obtained from a 10-year-old poplar stand (Popolus sp.), near Carignano. There were no detectable effects on ATP, fluorescein diacetate hydrolysis, and biomass P that could be attributed to the introduction of the antagonists. A transient increase of carbon dioxide evolution and biomass C was observed in response to the added inoculum. Although the results showed only some transient alterations, further studies are required to evaluate effects on specific microorganism populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to compare fungicide application timing for the control of sooty blotch and flyspeck (SBFS) of 'Fuji' apples in Rio Grande do Sul state, Brazil. The following treatments were evaluated in two growing seasons: two warning system-based (modified version of the Brown-Sutton-Hartmann system) spray of captan plus thiophanate methyl, with or without summer pruning; two calendar/rain-based spray of captan or a mixture of captan plus thiophanate methyl; fungicide spray timing based on a local integrated pest management (IPM) for the control of summer diseases; and a check without spraying. Sooty blotch and flyspeck incidence over time and their severity at harvest were evaluated. The highest number of spray was required by calendar/rain-based treatments (eight and seven sprays in the sequential years). The warning system recommended five and three sprays, in the sequential years, which led to the highest SBFS control efficacy expressed by the reduced initial inoculum and disease progress rate. Summer pruning enhanced SBFS control efficacy, especially by suppressing SBFS signs which tended to be restrained to the peduncle region of the fruit. Sooty blotch and flyspeck can be managed both with calendar and the grower-based IPM practices in Brazil, but a reduced number of sprays is required when the warning system is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.