833 resultados para medical student education
Resumo:
Review date: Review period January 1992-December 2001. Final analysis July 2004-January 2005. Background and review context: There has been no rigorous systematic review of the outcomes of early exposure to clinical and community settings in medical education. Objectives of review: (1) Identify published empirical evidence of the effects of early experience in medical education, analyse it, and synthesize conclusions from it. (2) Identify the strengths and limitations of the research effort to date, and identify objectives for future research. Search strategy: Ovid search of. BEI, ERIC, Medline, CIATAHL and EMBASE Additional electronic searches of: Psychinfo, Timelit, EBM reviews, SIGLE, and the Cochrane databases. Hand-searches of: Medical Education, Medical Teacher, Academic Medicine, Teaching and Learning in Medicine, Advances in Health Sciences Education, Journal of Educational Psychology. Criteria: Definitions: Experience: Authentic (real as opposed to simulated) human contact in a social or clinical context that enhances learning of health, illness and/or disease, and the role of the health professional. Early: What would traditionally have been regarded as the preclinical phase, usually the first 2 years. Inclusions: All empirical studies (verifiable, observational data) of early experience in the basic education of health professionals, whatever their design or methodology, including papers not in English. Evidence from other health care professions that could be applied to medicine was included. Exclusions: Not empirical; not early; post-basic; simulated rather than 'authentic' experience. Data collection: Careful validation of selection processes. Coding by two reviewers onto an extensively modified version of the standard BEME coding sheet. Accumulation into an Access database. Secondary coding and synthesis of an interpretation. Headline results: A total of 73 studies met the selection criteria and yielded 277 educational outcomes; 116 of those outcomes (from 38 studies) were rated strong and important enough to include in a narrative synthesis of results; 76% of those outcomes were from descriptive studies and 24% from comparative studies. Early experience motivated and satisfied students of the health professions and helped them acclimatize to clinical environments, develop professionally, interact with patients with more confidence and less stress, develop self-reflection and appraisal skill, and develop a professional identity. It strengthened their learning and made it more real and relevant to clinical practice. It helped students learn about the structure and function of the healthcare system, and about preventive care and the role of health professionals. It supported the learning of both biomedical and behavioural/social sciences and helped students acquire communication and basic clinical skills. There were outcomes for beneficiaries other than students, including teachers, patients, populations, organizations and specialties. Early experience increased recruitment to primary care/rural medical practice, though mainly in US studies which introduced it for that specific purpose as part of a complex intervention. Conclusions: Early experience helps medical students socialize to their chosen profession. It. helps them acquire a range of subject matter and makes their learning more real and relevant. It has potential benefits for other stakeholders, notably teachers and patients. It can influence career choices.
Resumo:
This paper investigates how government policy directions embracing deregulation and market liberalism, together with significant pre-existing tensions within the Australian medical profession, produced ground breaking change in the funding and delivery of medical education for general practitioners. From an initial view between and within the medical profession, and government, about the goal of improving the standards of general practice education and training, segments of the general practice community, particularly those located in rural and remote settings, displayed increasingly vocal concerns about the approach and solutions proffered by the predominantly urban-influenced Royal Australian College of General Practitioners (RACGP). The extent of dissatisfaction culminated in the establishment of the Australian College of Rural and Remote Medicine (ACRRM) in 1997 and the development of an alternative curriculum for general practice. This paper focuses on two decades of changes in general practice training and how competition policy acted as a justificatory mechanism for putting general practice education out to competitive tender against a background of significant intra-professional conflict. The government's interest in increasing efficiency and deregulating the 'closed shop' practices of professions, as expressed through national competition policy, ultimately exposed the existing antagonisms within the profession to public view and allowed the government some influence on the sacred cow of professional training. Government policy has acted as a mechanism of resolution for long standing grievances of the rural GPs and propelled professional training towards an open competition model. The findings have implications for future research looking at the unanticipated outcomes of competition and internal markets.
Resumo:
This paper focusses on attracting and retaining young people into technical disciplines. It introduces a new model of technical education from age 14 that the UK Government initiated in 2008. A concept of University led Technical Colleges (UTCs) for 14-19 year olds. These state supported schools, sponsored by a University, have technical curricula, technologically enabled learning environments and strong engagement with employers. As new schools they have been able to recruit outstanding staff that are conversant with the use of technology to enhance learning and all students have their own iPads. The Aston University Engineering Academy opened in September 2012 and a recent survey of staff, students and parents has provided both qualitative and quantitative data on the benefits to motivation and learning of these embedded iPads. The devices have also had advantages for the management of data on student achievement from a leadership, teaching staff and parental view point.
Resumo:
A discussion of how to promote employability within the curriculum
Resumo:
Starting with the question “How can University level Engineering Education be developed in such a way so as to enhance the quality of the student learning experience?”, this discussion paper proposes an approach to engineering education developed by a senior engineering educator working alongside a pedagogical researcher in an attempt to engage colleagues in contemporary debates about the issues currently faced across the Sector. Such issues include difficulties with recruiting students onto programmes as well as high levels of student attrition and failure. Underpinned by three distinctive concepts: Synergy, Variety & Relationships (S+V+R), the approach brings together pedagogic and engineering epistemologies in an empirically grounded framework in such a way so as to provide an accessible and relevant learning approach that, if followed, engenders student success [S2]. Specifically developed with the intention of increasing retention and positively impacting student success [S2], the S+V+R=S2 approach provides a scholarly and Synergetic (S) approach to engineering education that is both innovative and exciting. Building on the argument that Variety (V) in education is pivotal to promoting originality and creativity in learning and teaching, this paper shows how, by purposefully developing a range of learning and teaching approaches, student engagement and thus success can be increased. It also considers the importance of Relationships (R) in higher education, arguing that belonging and relationships are crucial factors impacting student experiences. When taken together (Synergy, Variety and Relationships) and applied within an Engineering Education context, students are provided with a unique learning environment – one that both promotes individual success and improves organisational effectiveness. The uniqueness of the approach is in the synthesis of these three concepts within an Engineering Education epistemology.