964 resultados para mechanical methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about historic wood as it ages naturally. Instead, most studies focus on biological decay, as it is often assumed that wood remains otherwise stable with age. This PhD project was organised by Historic Scotland and the University of Glasgow to investigate the natural chemical and physical aging of wood. The natural aging of wood was a concern for Historic Scotland as traditional timber replacement is the standard form of repair used in wooden cultural heritage; replacing rotten timber with new timber of the same species. The project was set up to look at what differences could exist both chemically and physically between old and new wood, which could put unforeseen stress on the joint between them. Through Historic Scotland it was possible to work with genuine historic wood from two species, Oak and Scots pine, both from the 1500’s, rather than relying on artificial aging. Artificial aging of wood is still a debated topic, with consideration given to whether it is truly mimicking the aging process or just damaging the wood cells. The chemical stability of wood was investigated using Fourier-transform infrared (FTIR) microscopy, as well as wet chemistry methods including a test for soluble sugars from the possible breakdown of the wood polymers. The physical properties assessed included using a tensile testing machine to uncover possible differences in mechanical properties. An environmental chamber was used to test the reaction to moisture of wood of different ages, as moisture is the most damaging aspect of the environment to wooden cultural objects. The project uncovered several differences, both physical and chemical, between the modern and historic wood which could affect the success of traditional ‘like for like’ repairs. Both oak and pine lost acetyl groups, over historic time, from their hemicellulose polymers. This chemical reaction releases acetic acid, which had no effect on the historic oak but was associated with reduced stiffness in historic pine, probably due to degradation of the hemicellulose polymers by acid hydrolysis. The stiffness of historic oak and pine was also reduced by decay. Visible pest decay led to loss of wood density but there was evidence that fungal decay, extending beyond what was visible, degraded the S2 layer of the pine cell walls, reducing the stiffness of the wood by depleting the cellulose microfibrils most aligned with the grain. Fungal decay of polysaccharides in pine wood left behind sugars that attracted increased levels of moisture. The degradation of essential polymers in the wood structure due to age had different impacts on the two species of wood, and raised questions concerning both the mechanism of aging of wood and the ways in which traditional repairs are implemented, especially in Scots pine. These repairs need to be done with more care and precision, especially in choosing new timber to match the old. Within this project a quantitative method of measuring the microfibril angle (MFA) of wood using polarised Fourier transform infrared (FTIR) microscopy has been developed, allowing the MFA of both new and historic pine to be measured. This provides some of the information needed for a more specific match when selecting replacement timbers for historic buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exogenous mechanical perturbations on living tissues are commonly used to investigate whether cell effectors can respond to mechanical cues. However, in most of these experiments, the applied mechanical stress and/or the biological response are described only qualitatively. We developed a quantitative pipeline based on microindentation and image analysis to investigate the impact of a controlled and prolonged compression on microtubule behaviour in the Arabidopsis shoot apical meristem, using microtubule fluorescent marker lines. We found that a compressive stress, in the order of magnitude of turgor pressure, induced apparent microtubule bundling. Importantly, that response could be reversed several hours after the release of compression. Next, we tested the contribution of microtubule severing to compression-induced bundling: microtubule bundling seemed less pronounced in the katanin mutant, in which microtubule severing is dramatically reduced. Conversely, some microtubule bundles could still be observed 16 hours after the release of compression in the spiral2 mutant, in which severing rate is instead increased. To quantify the impact of mechanical stress on anisotropy and orientation of microtubule arrays, we used the nematic tensor based FibrilTool ImageJ/Fiji plugin. To assess the degree of apparent bundling of the network, we developed several methods, some of which were borrowed from geostatistics. The final microtubule bundling response could notably be related to tissue growth velocity that was recorded by the indenter during compression. Because both input and output are quantified, this pipeline is an initial step towards correlating more precisely the cytoskeleton response to mechanical stress in living tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in micro- and nanoscale 3D fabrication techniques have enabled the creation of materials with a controllable nanoarchitecture that can have structural features spanning 5 orders of magnitude from tens of nanometers to millimeters. These fabrication methods in conjunction with nanomaterial processing techniques permit a nearly unbounded design space through which new combinations of nanomaterials and architecture can be realized. In the course of this work, we designed, fabricated, and mechanically analyzed a wide range of nanoarchitected materials in the form of nanolattices made from polymer, composite, and hollow ceramic beams. Using a combination of two-photon lithography and atomic layer deposition, we fabricated samples with periodic and hierarchical architectures spanning densities over 4 orders of magnitude from ρ=0.3-300kg/m3 and with features as small as 5nm. Uniaxial compression and cyclic loading tests performed on different nanolattice topologies revealed a range of novel mechanical properties: the constituent nanoceramics used here have size-enhanced strengths that approach the theoretical limit of materials strength; hollow aluminum oxide (Al2O3) nanolattices exhibited ductile-like deformation and recovered nearly completely after compression to 50% strain when their wall thicknesses were reduced below 20nm due to the activation of shell buckling; hierarchical nanolattices exhibited enhanced recoverability and a near linear scaling of strength and stiffness with relative density, with E∝ρ1.04 and σy∝ρ1.17 for hollow Al2O3 samples; periodic rigid and non-rigid nanolattice topologies were tested and showed a nearly uniform scaling of strength and stiffness with relative density, marking a significant deviation from traditional theories on “bending” and “stretching” dominated cellular solids; and the mechanical behavior across all topologies was highly tunable and was observed to strongly correlate with the slenderness λ and the wall thickness-to-radius ratio t/a of the beams. These results demonstrate the potential of nanoarchitected materials to create new highly tunable mechanical metamaterials with previously unattainable properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3)63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Osteophytes are osteo-cartilaginous metaplastic tissue outgrowths of bone capped by cartilage usually found in degenerative and inflammatory joint disease. The presence and degree of maturity of osteophytes, along with joint space narrowing, are the main radiographic criteria for diagnosis and grading osteoarthritis (OA). Although osteophytes are known for being anatomic signs of advanced OA, they can occur in non-symptomatic joints, in joints with no other observable alterations, and in early stage OA. It remains unclear if they develop from molecular, physiological and/or mechanical stimuli. We hypothesized that mechanical strains play a role in osteophyte development. The overall objective of this thesis was to find evidence that osteophytes are influenced by mechanical strains. Methods: The first project was to develop a mechanically-induced osteophyte animal model. One single impact load that was reported to induce moderate joint damage was applied to the periosteum of the rat knee. Animals were sacrificed at four time points to characterize the evolution of damaged tissue and the joint by histology. A second study using human mature hip osteophytes was conducted to evaluate if mature osteophyte presented histological signs of proliferating and developmental processes. The histological characterization of mature osteophyte was used to compare findings of the mechanically-induced osteophyte in the animal model to validate the use of this rodent model in studying some aspect of osteophyte development of human. Lastly, a detailed three-dimensional (3D) radiological morphometric analysis was performed on microscopic computed tomography (µCT) scanned femoral heads collected from total hip arthroplasty patients presenting mature hip osteophytes. Quantitative morphometric measures of osteophytes internal structure was compared to three regions of the femoral head of known quality of organisation and mechanical constraint. Results and Conclusion: Osteophyte can be mechanically induced by a single load impact to the joint periosteum, indicating that a moderate trauma to the periosteal layer of the joint may play a role in osteophyte development. Mature osteophytes have proliferation, developing and remodelling zones and have trabecular structures. Mechanically-induced osteophytes and mature osteophytes presented similar histological composition. Mature osteophytes have organized internal structure. These results provide evidence that mechanical strain can influence osteophyte development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quality, pure DNA is required for ensuring reliable and reproducible results in molecular diagnosis applications. A number of in-house and commercial methods are available for the extraction and purification of genomic DNA from faecal material, each one offering a specific combination of performance, cost-effectiveness, and easiness of use that should be conveniently evaluated in function of the pathogen of interest. In this comparative study the marketed kits QIAamp DNA stool mini (Qiagen), SpeedTools DNA extraction (Biotools), DNAExtract-VK (Vacunek), PowerFecal DNA isolation (MoBio), and Wizard magnetic DNA purification system (Promega Corporation) were assessed for their efficacy in obtaining DNA of the most relevant enteric protozoan parasites associated to gastrointestinal disease globally. A panel of 113 stool specimens of clinically confirmed patients with cryptosporidiosis (n = 29), giardiasis (n = 47) and amoebiasis by Entamoeba histolytica (n = 3) or E. dispar (n = 10) and apparently healthy subjects (n = 24) were used for this purpose. Stool samples were aliquoted in five sub-samples and individually processed by each extraction method evaluated. Purified DNA samples were subsequently tested in PCR-based assays routinely used in our laboratory. The five compared methods yielded amplifiable amounts of DNA of the pathogens tested, although performance differences were observed among them depending on the parasite and the infection burden. Methods combining chemical, enzymatic and/or mechanical lysis procedures at temperatures of at least 56 °C were proven more efficient for the release of DNA from Cryptosporidium oocysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.