843 resultados para mathematical programming
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.
Resumo:
This study aimed to apply mathematical models to the growth of Nile tilapia (Oreochromis niloticus) reared in net cages in the lower São Francisco basin and choose the model(s) that best represents the conditions of rearing for the region. Nonlinear models of Brody, Bertalanffy, Logistic, Gompertz, and Richards were tested. The models were adjusted to the series of weight for age according to the methods of Gauss, Newton, Gradiente and Marquardt. It was used the procedure "NLIN" of the System SAS® (2003) to obtain estimates of the parameters from the available data. The best adjustment of the data were performed by the Bertalanffy, Gompertz and Logistic models which are equivalent to explain the growth of the animals up to 270 days of rearing. From the commercial point of view, it is recommended that commercialization of tilapia from at least 600 g, which is estimated in the Bertalanffy, Gompertz and Logistic models for creating over 183, 181 and 184 days, and up to 1 Kg of mass , it is suggested the suspension of the rearing up to 244, 244 and 243 days, respectively.
Resumo:
Based on experimental tests, it was obtained the equations for drying, equilibrium moisture content, latent heat of vaporization of water contained in the product and the equation of specific heat of cassava starch pellets, essential parameters for realizing modeling and mathematical simulation of mechanical drying of cassava starch for a new technique proposed, consisting of preformed by pelleting and subsequent artificial drying of starch pellets. Drying tests were conducted in an experimental chamber by varying the air temperature, relative humidity, air velocity and product load. The specific heat of starch was determined by differential scanning calorimetry. The generated equations were validated through regression analysis, finding an appropriate correlation of the data, which indicates that by using these equations, can accurately model and simulate the drying process of cassava starch pellets.
Resumo:
Detta arbete fokuserar på modellering av katalytiska gas-vätskereaktioner som genomförs i kontinuerliga packade bäddar. Katalyserade gas-vätskereaktioner hör till de mest typiska reaktionerna i kemisk industri; därför behandlas här packade bäddreaktorer som ett av de populäraste alternativen, då kontinuerlig drift eftersträvas. Tack vare en stor katalysatormängd per volym har de en kompakt struktur, separering av katalysatorn behövs inte och genom en professionell design kan den mest fördelaktiga strömningsbilden upprätthållas i reaktorn. Packade bäddreaktorer är attraktiva p.g.a. lägre investerings- och driftskostnader. Även om packade bäddar används intensivt i industri, är det mycket utmanande att modellera. Detta beror på att tre faser samexisterar och systemets geometri är komplicerad. Existensen av flera reaktioner gör den matematiska modelleringen även mera krävande. Många förenklingar blir därmed nödvändiga. Modellerna involverar typiskt flera parametrar som skall justeras på basis av experimentella data. I detta arbete studerades fem olika reaktionssystem. Systemen hade studerats experimentellt i vårt laboratorium med målet att nå en hög produktivitet och selektivitet genom ett optimalt val av katalysatorer och driftsbetingelser. Hydrering av citral, dekarboxylering av fettsyror, direkt syntes av väteperoxid samt hydrering av sockermonomererna glukos och arabinos användes som exempelsystem. Även om dessa system hade mycket gemensamt, hade de också unika egenskaper och krävde därför en skräddarsydd matematisk behandling. Citralhydrering var ett system med en dominerande huvudreaktion som producerar citronellal och citronellol som huvudprodukter. Produkterna används som en citrondoftande komponent i parfymer, tvålar och tvättmedel samt som plattform-kemikalier. Dekarboxylering av stearinsyra var ett specialfall, för vilket en reaktionsväg för produktion av långkedjade kolväten utgående från fettsyror söktes. En synnerligen hög produktselektivitet var karakteristisk för detta system. Även processuppskalning modellerades för dekarboxylerings-reaktionen. Direkt syntes av väteperoxid hade som målsättning att framta en förenklad process att producera väteperoxid genom att låta upplöst väte och syre reagera direkt i ett lämpligt lösningsmedel på en aktiv fast katalysator. I detta system förekommer tre bireaktioner, vilka ger vatten som oönskad produkt. Alla dessa tre reaktioner modellerades matematiskt med hjälp av dynamiska massbalanser. Målet med hydrering av glukos och arabinos är att framställa produkter med en hög förädlingsgrad, nämligen sockeralkoholer, genom katalytisk hydrering. För dessa två system löstes ämnesmängd- och energibalanserna simultant för att evaluera effekter inne i porösa katalysatorpartiklar. Impulsbalanser som bestämmer strömningsbetingelser inne i en kemisk reaktor, ersattes i alla modelleringsstudier med semi-empiriska korrelationsuttryck för vätskans volymandel och tryckförlust och med axiell dispersionsmodell för beskrivning av omblandningseffekter. Genom att justera modellens parametrar kunde reaktorns beteende beskrivas väl. Alla experiment var genomförda i laboratorieskala. En stor mängd av kopplade effekter samexisterade: reaktionskinetik inklusive adsorption, katalysatordeaktivering, mass- och värmeöverföring samt strömningsrelaterade effekter. En del av dessa effekter kunde studeras separat (t.ex. dispersionseffekter och bireaktioner). Inverkan av vissa fenomen kunde ibland minimeras genom en noggrann planering av experimenten. På detta sätt kunde förenklingar i modellerna bättre motiveras. Alla system som studerades var industriellt relevanta. Utveckling av nya, förenklade produktionsteknologier för existerande kemiska komponenter eller nya komponenter är ett gigantiskt uppdrag. Studierna som presenterades här fokuserade på en av den teknisk-vetenskapliga utfärdens första etapper.
Resumo:
Problem of modeling of anaesthesia depth level is studied in this Master Thesis. It applies analysis of EEG signals with nonlinear dynamics theory and further classification of obtained values. The main stages of this study are the following: data preprocessing; calculation of optimal embedding parameters for phase space reconstruction; obtaining reconstructed phase portraits of each EEG signal; formation of the feature set to characterise obtained phase portraits; classification of four different anaesthesia levels basing on previously estimated features. Classification was performed with: Linear and quadratic Discriminant Analysis, k Nearest Neighbours method and online clustering. In addition, this work provides overview of existing approaches to anaesthesia depth monitoring, description of basic concepts of nonlinear dynamics theory used in this Master Thesis and comparative analysis of several different classification methods.
Resumo:
This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.
Resumo:
A mathematical model is developed for gas-solids flows in circulating fluidized beds. An Eulerian formulation is followed based on the two-fluids model approach where both the fluid and the particulate phases are treated as a continuum. The physical modelling is discussed, including the formulation of boundary conditions and the description of the numerical methodology. Results of numerical simulation are presented and discussed. The model is validated through comparison to experiment, and simulation is performed to investigate the effects on the flow hydrodynamics of the solids viscosity.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
Työn tavoitteena on sovittaa Qt opetussuunnitelmaan. Työ sisältää Qt:n lyhyen historian sekä katsauksen sen nykytilaan. Nykytilakatsaus sisältää kolme näkökulmaa: miten ja missä Qt:ta voidaan käyttää, sekä sen käyttötarkoitukset teollisuudessa ja opetuksessa. Työn tuloksena syntyy luentodemonstraatiota varten pieni ohjelma, joka on luotu C++:n ja Qt Designerin avulla ja käyttää olennaisia käyttöliittymäkirjaston olioita. Toisena tuotteena työssä syntyy luonnos Lappeenrannan Teknillisen Yliopiston ohjelmointikursseista, joissa Qt:ta voitaisiin käyttää avustamaan opiskelijoita näkemään, miten graafinen ohjelma luodaan sekä valmentaa heitä ymmärtämään viitekehyksien ja graafisten kirjastojen tuomat edut.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
The aim of the present set of longitudinal studies was to explore 3-7-year-old children.s Spontaneous FOcusing on Numerosity (SFON) and its relation to early mathematical development. The specific goals were to capture in method and theory the distinct process by which children focus on numerosity as a part of their activities involving exact number recognition, and individual differences in this process that may be informative in the development of more complex number skills. Over the course of conducting the five studies, fifteen novel tasks were progressively developed for the SFON assessments. In the tasks, confounding effects of insufficient number recognition, verbal comprehension, other procedural skills as well as working memory capacity were aimed to be controlled. Furthermore, how children.s individual differences in SFON are related to their development of number sequence, subitizing-based enumeration, object counting and basic arithmetic skills was explored. The effect of social interaction on SFON was tested. Study I captured the first phase of the 3-year longitudinal study with 39 children. It was investigated whether there were differences in 3-year-old children.s tendency to focus on numerosity, and whether these differences were related to the children.s development of cardinality recognition skills from the age of 3 to 4 years. It was found that the two groups of children formed on the basis of their amount of SFON tendency at the age of 3 years differed in their development of recognising and producing small numbers. The children whose SFON tendency was very predominant developed faster in cardinality related skills from the age of 3 to 4 years than the children whose SFON tendency was not as predominant. Thus, children.s development in cardinality recognition skills is related to their SFON tendency. Studies II and III were conducted to investigate, firstly, children.s individual differences in SFON, and, secondly, whether children.s SFON is related to their counting development. Altogether nine tasks were designed for the assessments of spontaneous and guided focusing on numerosity. The longitudinal data of 39 children in Study II from the age of 3.5 to 6 years showed individual differences in SFON at the ages of 4, 5 and 6 years, as well as stability in children.s SFON across tasks used at different ages. The counting skills were assessed at the ages of 3.5, 5 and 6 years. Path analyses indicated a reciprocal tendency in the relationship between SFON and counting development. In Study III, these results on the individual differences in SFON tendency, the stability of SFON across different tasks and the relationship of SFON and mathematical skills were confirmed by a larger-scale cross-sectional study of 183 on average 6.5-year-old children (range 6;0-7;0 years). The significant amount of unique variance that SFON accounted for number sequence elaboration, object counting and basic arithmetic skills stayed statistically significant (partial correlations varying from .27 to .37) when the effects of non-verbal IQ and verbal comprehension were controlled. In addition, to confirm that the SFON tasks assess SFON tendency independently from enumeration skills, guided focusing tasks were used for children who had failed in SFON tasks. It was explored whether these children were able to proceed in similar tasks to SFON tasks once they were guided to focus on number. The results showed that these children.s poor performance in the SFON tasks was not caused by their deficiency in executing the tasks but on lacking focusing on numerosity. The longitudinal Study IV of 39 children aimed at increasing the knowledge of associations between children.s long-term SFON tendency, subitizing-based enumeration and verbal counting skills. Children were tested twice at the age of 4-5 years on their SFON, and once at the age of 5 on their subitizing-based enumeration, number sequence production, as well as on their skills for counting of objects. Results showed considerable stability in SFON tendency measured at different ages, and that there is a positive direct association between SFON and number sequence production. The association between SFON and object counting skills was significantly mediated by subitizing-based enumeration. These results indicate that the associations between the child.s SFON and sub-skills of verbal counting may differ on the basis of how significant a role understanding the cardinal meanings of number words plays in learning these skills. The specific goal of Study V was to investigate whether it is possible to enhance 3-year old children.s SFON tendency, and thus start children.s deliberate practice in early mathematical skills. Participants were 3-year-old children in Finnish day care. The SFON scores and cardinality-related skills of the experimental group of 17 children were compared to the corresponding results of the 17 children in the control group. The results show an experimental effect on SFON tendency and subsequent development in cardinality-related skills during the 6-month period from pretest to delayed posttest in the children with some initial SFON tendency in the experimental group. Social interaction has an effect on children.s SFON tendency. The results of the five studies assert that within a child.s existing mathematical competence, it is possible to distinguish a separate process, which refers to the child.s tendency to spontaneously focus on numerosity. Moreover, there are significant individual differences in children.s SFON at the age of 3-7 years. Moderate stability was found in this tendency across different tasks assessed both at the same and at different ages. Furthermore, SFON tendency is related to the development of early mathematical skills. Educational implications of the findings emphasise, first, the importance of regarding focusing on numerosity as a separate, essential process in the assessments of young children.s mathematical skills. Second, the substantial individual differences in SFON tendency during the childhood years suggest that uncovering and modeling this kind of mathematically meaningful perceiving of the surroundings and tasks could be an efficient tool for promoting young children.s mathematical development, and thus prevent later failures in learning mathematical skills. It is proposed to consider focusing on numerosity as one potential sub-process of activities involving exact number recognition in future studies.