973 resultados para mathematical functions
Resumo:
The basic principles and equations are developed for elementary finance, based on the concept of compound interest. The five quantities of interest in such problems are present value, future value, amount of periodic payment, number of periods and the rate of interest per period. We consider three distinct means of computing each of these five quantities in Excel 2007: (i) use of algebraic equations, (ii) by recursive schedule and the Goal Seek facility, and (iii) use of Excel's intrinsic financial functions. The paper is intended to be used as the basis for a lesson plan and contains many examples and solved problems. Comment is made regarding the relative difficulty of each approach, and a prominent theme is the systematic use of more than one method to increase student understanding and build confidence in the answer obtained. Full instructions to build each type of model are given and a complete set of examples and solutions may be downloaded (Examples.xlsx and Solutions.xlsx).
Resumo:
Many students of calculus are not aware that the calculus they have learned is a special case (integer order) of fractional calculus. Fractional calculus is the study of arbitrary order derivatives and integrals and their applications. The article begins by stating a naive question from a student in a paper by Larson (1974) and establishes, for polynomials and exponential functions, that they can be deformed into their derivative using the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous deformations dynamically through conditional formatting. Some applications are discussed and a connection made to mathematics education.
Resumo:
The five quantities of interest in elementary finance problems are present value, future value, amount of periodic payment, number of periods and the rate of compound interest per period. A recursive approach to computing each of these five quantities in a modern version of Excel, for the case of ordinary annuities, is described. The aim is to increase student understanding and build confidence in the answer obtained, and this may be achieved with only linear relationships and in cases where student knowledge of algebra is essentially zero. Annuity problems may be solved without use of logarithms and black-box intrinsic functions; these being used only as check mechanisms. The author has had success with the method at Bond University and surrounding high schools in Queensland, Australia.
Resumo:
The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
In this article we study the azimuthal shear deformations in a compressible Isotropic elastic material. This class of deformations involves an azimuthal displacement as a function of the radial and axial coordinates. The equilibrium equations are formulated in terms of the Cauchy-Green strain tensors, which form an overdetermined system of partial differential equations for which solutions do not exist in general. By means of a Legendre transformation, necessary and sufficient conditions for the material to support this deformation are obtained explicitly, in the sense that every solution to the azimuthal equilibrium equation will satisfy the remaining two equations. Additionally, we show how these conditions are sufficient to support all currently known deformations that locally reduce to simple shear. These conditions are then expressed both in terms of the invariants of the Cauchy-Green strain and stretch tensors. Several classes of strain energy functions for which this deformation can be supported are studied. For certain boundary conditions, exact solutions to the equilibrium equations are obtained. © 2005 Society for Industrial and Applied Mathematics.
Resumo:
In this article we obtain closed-form solutions for the combined inflation and axial shear of an elastic tube in respect of the compressible Isotropic elastic material introduced by Levinson and Burgess. Several other boundary-value problems are also examined, including the bending of a rectangular block and straightening of a cylindrical sector, both coupled with stretching and shearing, and an axially varying twist deformation. Some of the solutions appear in closed form, others are expressible in terms of elliptic functions.
Resumo:
In this paper we examine the combined azimuthal and axial shear of a compressible isotropic elastic circular cylindrical tube of finite extent, otherwise referred to as helical shear (which is an isochoric deformation). The equilibrium equations are formulated in terms of the principal stretches, and explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation are obtained and compared with those obtained previously for this problem. Several classes of strain-energy functions are derived and in some general cases complete solutions of the equilibrium equations are obtained. Existing results are recovered as special cases and some new results for the strain-energy functions derived are determined and discussed.
Resumo:
In this paper we examine the combined extension and torsion of a compressible isotropic elastic cylinder of finite extent. The equilibrium equations are formulated in terms of the principal stretches and then applied to the special case of pure torsion superimposed on a uniform extension (an isochoric deformation). Explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation with vanishing traction on the lateral surfaces of the cylinder are obtained. Some strain-energy functions satisfying these conditions are considered, existing results are recovered as special cases and new results are obtained. We also point out how the strain-energy functions generated from the considered isochoric deformation considered (of a compressible material) can be used to generate energy functions and corresponding solutions for the incompressible theory.
Resumo:
Universal One-Way Hash Functions (UOWHFs) may be used in place of collision-resistant functions in many public-key cryptographic applications. At Asiacrypt 2004, Hong, Preneel and Lee introduced the stronger security notion of higher order UOWHFs to allow construction of long-input UOWHFs using the Merkle-Damgård domain extender. However, they did not provide any provably secure constructions for higher order UOWHFs. We show that the subset sum hash function is a kth order Universal One-Way Hash Function (hashing n bits to m < n bits) under the Subset Sum assumption for k = O(log m). Therefore we strengthen a previous result of Impagliazzo and Naor, who showed that the subset sum hash function is a UOWHF under the Subset Sum assumption. We believe our result is of theoretical interest; as far as we are aware, it is the first example of a natural and computationally efficient UOWHF which is also a provably secure higher order UOWHF under the same well-known cryptographic assumption, whereas this assumption does not seem sufficient to prove its collision-resistance. A consequence of our result is that one can apply the Merkle-Damgård extender to the subset sum compression function with ‘extension factor’ k+1, while losing (at most) about k bits of UOWHF security relative to the UOWHF security of the compression function. The method also leads to a saving of up to m log(k+1) bits in key length relative to the Shoup XOR-Mask domain extender applied to the subset sum compression function.
Resumo:
We prove that homogeneous bent functions f:GF(2)^2n --> GF(2) of degree n do not exist for n>3. Consequently homogeneous bent functions must have degree
Resumo:
We determine the affine equivalence classes of the eight variable degree three homogeneous bent functions using a new algorithm. Our algorithm applies to general bent functions and can systematically determine the automorphism groups. We provide a partial verification of the enumeration of eight variable degree three homogeneous bent functions obtained by Meng et al. We determine the affine equivalence classes of these functions.
Resumo:
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations.
Resumo:
Cancer is a disease of signal transduction in which the dysregulation of the network of intracellular and extracellular signaling cascades is sufficient to thwart the cells finely-tuned biochemical control mechanisms. A keen interest in the mathematical modeling of cell signaling networks and the regulation of signal transduction has emerged in recent years, and has produced a glimmer of insight into the sophisticated feedback control and network regulation operating within cells. In this review, we present an overview of published theoretical studies on the control aspects of signal transduction, emphasizing the role and importance of mechanisms such as ‘ultrasensitivity’ and feedback loops. We emphasize that these exquisite and often subtle control strategies represent the key to orchestrating ‘simple’ signaling behaviors within the complex intracellular network, while regulating the trade-off between sensitivity and robustness to internal and external perturbations. Through a consideration of these apparent paradoxes, we explore how the basic homeostasis of the intracellular signaling network, in the face of carcinogenesis, can lead to neoplastic progression rather than cell death. A simple mathematical model is presented, furnishing a vivid illustration of how ‘control-oriented’ models of the deranged signaling networks in cancer cells may enucleate improved treatment strategies, including patient-tailored combination therapies, with the potential for reduced toxicity and more robust and potent antitumor activity.
Resumo:
Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.
Resumo:
Objective To evaluate the potential impact of the current global economic crisis (GEC) on the spread of HIV. Design To evaluate the impact of the economic downturn we studied two distinct HIV epidemics in Southeast Asia: the generalized epidemic in Cambodia where incidence is declining and the epidemic in Papua New Guinea (PNG) which is in an expansion phase. Methods Major HIV-related risk factors that may change due to the GEC were identified and a dynamic mathematical transmission model was developed and used to forecast HIV prevalence, diagnoses, and incidence in Cambodia and PNG over the next 3 years. Results In Cambodia, the total numbers of HIV diagnoses are not expected to be largely affected. However, an estimated increase of up to 10% in incident cases of HIV, due to potential changes in behavior, may not be observed by the surveillance system. In PNG, HIV incidence and diagnoses could be more affected by the GEC, resulting in respective increases of up to 17% and 11% over the next 3 years. Decreases in VCT and education programs are the factors that may be of greatest concern in both settings. A reduction in the rollout of antiretroviral therapy could increase the number of AIDS-related deaths (by up to 7.5% after 3 years). Conclusions The GEC is likely to have a modest impact on HIV epidemics. However, there are plausible conditions under which the economic downturns can noticeably influence epidemic trends. This study highlights the high importance of maintaining funding for HIV programs.