910 resultados para major histocompatibility complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

JenPep is a relational database containing a compendium of thermodynamic binding data for the interaction of peptides with a range of important immunological molecules:  the major histocompatibility complex, TAP transporter, and T cell receptor. The database also includes annotated lists of B cell and T cell epitopes. Version 2.0 of the database is implemented in a bespoke postgreSQL database system and is fully searchable online via a perl/HTML interface (URL:  http://www.jenner.ac.uk/JenPep).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysing the molecular polymorphism and interactions of DNA, RNA and proteins is of fundamental importance in biology. Predicting functions of polymorphic molecules is important in order to design more effective medicines. Analysing major histocompatibility complex (MHC) polymorphism is important for mate choice, epitope-based vaccine design and transplantation rejection etc. Most of the existing exploratory approaches cannot analyse these datasets because of the large number of molecules with a high number of descriptors per molecule. This thesis develops novel methods for data projection in order to explore high dimensional biological dataset by visualising them in a low-dimensional space. With increasing dimensionality, some existing data visualisation methods such as generative topographic mapping (GTM) become computationally intractable. We propose variants of these methods, where we use log-transformations at certain steps of expectation maximisation (EM) based parameter learning process, to make them tractable for high-dimensional datasets. We demonstrate these proposed variants both for synthetic and electrostatic potential dataset of MHC class-I. We also propose to extend a latent trait model (LTM), suitable for visualising high dimensional discrete data, to simultaneously estimate feature saliency as an integrated part of the parameter learning process of a visualisation model. This LTM variant not only gives better visualisation by modifying the project map based on feature relevance, but also helps users to assess the significance of each feature. Another problem which is not addressed much in the literature is the visualisation of mixed-type data. We propose to combine GTM and LTM in a principled way where appropriate noise models are used for each type of data in order to visualise mixed-type data in a single plot. We call this model a generalised GTM (GGTM). We also propose to extend GGTM model to estimate feature saliencies while training a visualisation model and this is called GGTM with feature saliency (GGTM-FS). We demonstrate effectiveness of these proposed models both for synthetic and real datasets. We evaluate visualisation quality using quality metrics such as distance distortion measure and rank based measures: trustworthiness, continuity, mean relative rank errors with respect to data space and latent space. In cases where the labels are known we also use quality metrics of KL divergence and nearest neighbour classifications error in order to determine the separation between classes. We demonstrate the efficacy of these proposed models both for synthetic and real biological datasets with a main focus on the MHC class-I dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular peptide vaccines contain T-cell epitopes. The main prerequisite for a peptide to act as a T-cell epitope is that it binds to a major histocompatibility complex (MHC) protein. Peptide MHC binder identification is an extremely costly experimental challenge since human MHCs, named human leukocyte antigen, are highly polymorphic and polygenic. Here we present EpiDOCK, the first structure-based server for MHC class II binding prediction. EpiDOCK predicts binding to the 23 most frequent human, MHC class II proteins. It identifies 90% of true binders and 76% of true non-binders, with an overall accuracy of 83%. EpiDOCK is freely accessible at http://epidock.ddg-pharmfac. net. © The Author 2013. Published by Oxford University Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article analyzes the contribution of stochastic thermal fluctuations in the attachment times of the immature T-cell receptor TCR: peptide-major-histocompatibility-complex pMHC immunological synapse bond. The key question addressed here is the following: how does a synapse bond remain stabilized in the presence of high-frequency thermal noise that potentially equates to a strong detaching force? Focusing on the average time persistence of an immature synapse, we show that the high-frequency nodes accompanying large fluctuations are counterbalanced by low-frequency nodes that evolve over longer time periods, eventually leading to signaling of the immunological synapse bond primarily decided by nodes of the latter type. Our analysis shows that such a counterintuitive behavior could be easily explained from the fact that the survival probability distribution is governed by two distinct phases, corresponding to two separate time exponents, for the two different time regimes. The relatively shorter timescales correspond to the cohesion:adhesion induced immature bond formation whereas the larger time reciprocates the association:dissociation regime leading to TCR:pMHC signaling. From an estimate of the bond survival probability, we show that, at shorter timescales, this probability PΔ(τ) scales with time τ as a universal function of a rescaled noise amplitude DΔ2, such that PΔ(τ)∼τ-(ΔD+12),Δ being the distance from the mean intermembrane (T cell:Antigen Presenting Cell) separation distance. The crossover from this shorter to a longer time regime leads to a universality in the dynamics, at which point the survival probability shows a different power-law scaling compared to the one at shorter timescales. In biological terms, such a crossover indicates that the TCR:pMHC bond has a survival probability with a slower decay rate than the longer LFA-1:ICAM-1 bond justifying its stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune system is perhaps the largest yet most diffuse and distributed somatic system in vertebrates. It plays vital roles in fighting infection and in the homeostatic control of chronic disease. As such, the immune system in both pathological and healthy states is a prime target for therapeutic interventions by drugs-both small-molecule and biologic. Comprising both the innate and adaptive immune systems, human immunity is awash with potential unexploited molecular targets. Key examples include the pattern recognition receptors of the innate immune system and the major histocompatibility complex of the adaptive immune system. Moreover, the immune system is also the source of many current and, hopefully, future drugs, of which the prime example is the monoclonal antibody, the most exciting and profitable type of present-day drug moiety. This brief review explores the identity and synergies of the hierarchy of drug targets represented by the human immune system, with particular emphasis on the emerging paradigm of systems pharmacology. © the authors, publisher and licensee Libertas Academica Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins of the Major Histocompatibility Complex (MHC) bind self and nonself peptide antigens or epitopes within the cell and present them at the cell surface for recognition by T cells. All T-cell epitopes are MHC binders but not all MCH binders are T-cell epitopes. The MHC class II proteins are extremely polymorphic. Polymorphic residues cluster in the peptide-binding region and largely determine the MHC's peptide selectivity. The peptide binding site on MHC class II proteins consist of five binding pockets. Using molecular docking, we have modelled the interactions between peptide and MHC class II proteins from locus DRB1. A combinatorial peptide library was generated by mutation of residues at peptide positions which correspond to binding pockets (so called anchor positions). The binding affinities were assessed using different scoring functions. The normalized scoring functions for each amino acid at each anchor position were used to construct quantitative matrices (QM) for MHC class II binding prediction. Models were validated by external test sets comprising 4540 known binders. Eighty percent of the known binders are identified in the best predicted 15% of all overlapping peptides, originating from one protein. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Major Histocompatibility Complex (MHC) comprises the most polymorphic loci in animals. MHC plays an important role during the first steps of the immune response in vertebrates. In humans, MHC molecules (also named human leukocyte antigens, HLA) were initially regarded as class I or class II molecules. Each of them, presents to different T cells subsets. MHC class I molecules, are heterodimers in which the heavy chain (alpha) has three extracellular domains, two of which (alpha 1 and alpha 2) are polymorphic and conform the antigen recognition sites (ARS). The ARS is thought to be subjected to balancing selection for variability, which is the cause of the very high polymorphism of the MHC molecules. Different pathogenic epitopes would be the evolutionary force causing balancing selection. MHC class I genes have been completely sequenced (α1 and α2 protein domains) and thoroughly studied in Gallus gallus (chicken) as well as in mammals. In fact, the MHC locus was first defined in chicken, specifically in the highly consanguineous variety „Leghorn‟. It has been found that, in the case of chickens the MHC genetic region is considerably smaller than it is in mammals (remarkably shorter introns were found in chickens), and is organized quite differently. The noteworthy presence of short introns in chickens; supported the hypothesis that chicken‟s MHC represented a „minimal essential MHC‟. Until now, it has been assumed that chicken (order Galliformes) MHC was similar to all species included in the whole class Aves...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous leukocyte populations are essential for pregnancy success. Uterine natural killer (uNK) cells are chief amongst these leukocytes and represent a unique lineage with limited cytotoxicity but abundant angiokine production. They possess a distinct phenotype of activating and inhibitory receptors that recognize major histocompatibility complex (MHC) molecules, such as the killer immunoglobulin like receptors (KIRs; mouse Ly49), and MHC-independent activating receptors, including the aryl hydrocarbon receptor (AHR) and natural cytotoxicity receptor 1 (NCR1). While the roles of MHC-dependent receptors are widely addressed in pregnancy, MHC-independent receptors are relatively unstudied. This thesis investigated the roles of MHC-independent receptors in promotion of mouse pregnancy and characterized early leukocyte interactions in the presence and absence of NCR1. It was hypothesized that loss of MHC-independent receptors impairs uNK cell development resulting in aberrations in leukocyte function and decidual vasculature. Implantation sites from Ahr-/- and Ncr1Gfp/Gfp mice were assessed using whole mount in situ immunohistochemistry (WM-IHC) and histochemical techniques. Leukocyte interactions identified during preliminary WM-IHC studies were confirmed as immune synapses. The novel identification of immune synapses in early mouse pregnancy compelled further examination of leukocyte conjugates in wildtype C57BL/6 and Ncr1Gfp/Gfp mice. In Ahr-/- and Ncr1Gfp/Gfp mice, receptor loss resulted in reduced uNK cell diameters, impaired decidual vasculature, and failures in spiral artery remodeling. Ahr-/- mice had severe fertility deficits whereas Ncr1Gfp/Gfp mice had increased fetal resorption indicating differing receptor requirements in pregnancy success. NCR1 loss primarily affected uNK cell maturation and function as identified by alterations in granule ultrastructure, lytic protein expression, and angiokine production. Leukocyte conjugates were frequent in early C57BL/6 decidua basalis and included uNK cells conjugating first with antigen presenting cells and then with T cells. Overall conjugate formation was reduced in the absence of NCR1, but specific uNK cell conjugations were unaffected by receptor loss. While KIR-MHC interactions are associated with numerous pregnancy complications in humans, the role of other uNK cell receptors are not well characterized. These results illustrate the importance of MHC-independent receptors in uNK cell activation during early pregnancy in mice and encourage further studies of pregnancy complications that may occur independently of maternal KIR-MHC contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived ‘passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHCpeptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitylation or covalent attachment of ubiquitin (Ub) to a variety of substrate proteins in cells is a versatile post-translational modification involved in the regulation of numerous cellular processes. The distinct messages that polyubiquitylation encodes are attributed to the multitude of conformations possible through attachment of ubiquitin monomers within a polyubiquitin chain via a specific lysine residue. Thus the hypothesis is that linkage defines polyubiquitin conformation which in turn determines specific recognition by cellular receptors. Ubiquitylation of membrane surface receptor proteins plays a very important role in regulating receptor-mediated endocytosis as well as endosomal sorting for lysosomal degradation. Epsin1 is an endocytic adaptor protein with three tandem UIMs (Ubiquitin Interacting Motifs) which are responsible for the highly specific interaction between epsin and ubiquitylated receptors. Epsin1 is also an oncogenic protein and its expression is upregulated in some types of cancer. Recently it has been shown that novel K11 and K63 mixed-linkage polyubiquitin chains serve as internalization signal for MHC I (Major Histocompatibility Complex I) molecule through their association with the tUIMs of epsin1. However the molecular mode of action and structural details of the interaction between polyubiquitin chains on receptors and tUIMs of epsin1 is yet to be determined. This information is crucial for the development of anticancer therapeutics targeting epsin1. The molecular basis for the linkage-specific recognition of K11 and K63 mixed-linkage polyubiquitin chains by the tandem UIMs of the endocytic adaptor protein epsin1 is investigated using a combination of NMR methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aetiology of autoimmunes disease is multifactorial and involves interactions among environmental, hormonal and genetic factors. Many different genes may contribute to autoimmunes disease susceptibility. The major histocompatibility complex (MHC) genes have been extensively studied, however many non-polymorphic MHC genes have also been reported to contribute to autoimmune diseases susceptibility. The aim of the present study was to evaluate the influence of SLC11A1 gene in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Ninety-six patients with SLE, 37 with RA and 202 controls enrolled in this case-control study, were evaluated with regard to demographic, genetic, laboratorial and clinical data. SLE mainly affects females in the ratio of 18 women for each man, 88,3% of the patients aged from 15 to 45 years old and it occurs with similar frequency in whites and mulattos. The rate of RA between women and men was 11:1, with 77,1% of the cases occurring from 31 to 60 years. The genetic analysis of the point mutation -236 of the SLC11A1 gene by SSCP did not show significant differences between alleles/genotypes in patients with SLE or RA when compared to controls. The most frequent clinical manifestations in patients with SLE were cutaneous (87%) and joint (84.9%). In patients with RA, the most frequent out-joint clinical manifestation were rheumatoid nodules (13,5%). Antinuclear antibodies were present in 100% of the patients with SLE. There was no significant relation between activity of disease and presence of rheumatoid factor in patients with RA, however 55,6% of patients with active disease presented positive rheumatoid factor. Significant association between alleles/genotypes of point mutation -236 and clinical manifestations was not found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Patologia Molecular, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La présentation d'antigène par les molécules d'histocompatibilité majeure de classe I (CMHI) permet au système immunitaire adaptatif de détecter et éliminer les agents pathogènes intracellulaires et des cellules anormales. La surveillance immunitaire est effectuée par les lymphocytes T CD8 qui interagissent avec le répertoire de peptides associés au CMHI présentés à la surface de toutes cellules nucléées. Les principaux gènes humains de CMHI, HLA-A et HLA-B, sont très polymorphes et par conséquent montrent des différences dans la présentation des antigènes. Nous avons étudié les différences qualitatives et quantitatives dans l'expression et la liaison peptidique de plusieurs allotypes HLA. Utilisant la technique de cytométrie de flux quantitative nous avons établi une hiérarchie d'expression pour les quatre HLA-A, B allotypes enquête. Nos résultats sont compatibles avec une corrélation inverse entre l'expression allotypique et la diversité des peptides bien que d'autres études soient nécessaires pour consolider cette hypothèse. Les origines mondiales du répertoire de peptides associés au CMHI restent une question centrale à la fois fondamentalement et dans la recherche de cibles immunothérapeutiques. Utilisant des techniques protéogénomiques, nous avons identifié et analysé 25,172 peptides CMHI isolées à partir des lymphocytes B de 18 personnes qui exprime collectivement 27 allotypes HLA-A,B. Alors que 58% des gènes ont été la source de 1-64 peptides CMHI par gène, 42% des gènes ne sont pas représentés dans l'immunopeptidome. Dans l'ensemble, l’immunopeptidome présenté par 27 allotypes HLA-A,B ne couvrent que 17% des séquences exomiques exprimées dans les cellules des sujets. Nous avons identifié plusieurs caractéristiques des transcrits et des protéines qui améliorent la production des peptides CMHI. Avec ces données, nous avons construit un modèle de régression logistique qui prédit avec une grande précision si un gène de notre ensemble de données ou à partir d'ensembles de données indépendants génèrerait des peptides CMHI. Nos résultats montrent la sélection préférentielle des peptides CMHI à partir d'un répertoire limité de produits de gènes avec des caractéristiques distinctes. L'idée que le système immunitaire peut surveiller des peptides CMHI couvrant seulement une fraction du génome codant des protéines a des implications profondes dans l'auto-immunité et l'immunologie du cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus suis est un important pathogène porcin et humain, causant méningites et septicémies. Des études suggèrent que S. suis dispose de facteurs de virulence, notamment sa capsule polysaccharidique (CPS), qui lui permettent de moduler les fonctions des cellules dendritiques (DCs), situées à l’interface entre l’immunité innée et adaptative. Les difficultés à développer un vaccin efficace suggèrent aussi une altération de la voie T dépendante. L’objectif général du projet était d’évaluer l’effet de S. suis sur l’activation des cellules T CD4+ ainsi que sur la capacité de présentation antigénique des DCs. Nous avons étudié dans un modèle murin in vivo la réponse T CD4+ mémoire lors d’infections primaire et secondaire. Une faible réponse mémoire centrale a été obtenue, suggérant que la réponse adaptative générée contre S. suis est limitée. Étant donné l’importance du complexe majeur d’histocompatibilité (MHC) de classe II dans la présentation antigénique, nous avons évalué in vitro et in vivo l’expression de ces molécules chez les DCs. Une modulation de l’expression du MHC-II par S. suis a été observée. L’analyse de la transcription de gènes impliqués dans la régulation transcriptionnelle et post-transcriptionnelle du MHC-II nous permet de suggérer que S. suis régule à la baisse la synthèse de nouvelles molécules et favorise leur dégradation lysosomale. Cette stratégie, dans laquelle la CPS ne jouerait qu’un rôle partiel, permettrait à S. suis d’échapper à la réponse adaptative T dépendante. Les résultats de cette étude fourniront de nouvelles perspectives dans la compréhension de la réponse adaptative lors de l’infection par S. suis.